Tumor Biology

, Volume 37, Issue 7, pp 8753–8764 | Cite as

A preliminary study of apoptosis induction in glioma cells via alteration of the Bax/Bcl-2-p53 axis by transformed and non-transformed root extracts of Leonurus sibiricus L.

  • Przemysław Sitarek
  • Ewa Skała
  • Monika Toma
  • Marzena Wielanek
  • Janusz Szemraj
  • Malgorzata Nieborowska-Skorska
  • Maciej Kolasa
  • Tomasz Skorski
  • Halina Wysokińska
  • Tomasz Śliwiński
Original Article


Leonurus sibiricus L. is a traditional medicinal plant which occurs in southern Siberia, China, Korea, Japan, and Vietnam. The plant shows several pharmacological effects, but the most interesting is its anti-cancer activity. The aim of our study was to examine the induction of apoptosis in malignant glioma cells, the most aggressive primary brain tumors of the central nervous system, following treatment with transformed root (TR) or non-transformed root (NR) L. sibiricus extracts. Both the NR and TR extracts were found to have cytotoxic activity in the glioma primary cells. The human glioblastoma cell lines obtained from patients were confirmed to be tumorogenic by the following three markers: D10S1709, D10S1172, and D22S283. HPLC and MS analysis revealed the presence of polyphenolic compounds (chlorogenic acid, ferulic acid, caffeic acid, p-coumaric acid, ellagic acid, and verbascoside) in both sets of root extracts. In summary, our findings demonstrate that treatment of the glioma cells with NR and TR extracts resulted (a) in significant cell growth inhibition, (b) S- and G2/M-phase cell cycle arrest, and (c) apoptosis in a dose-dependent fashion by changing Bax/Bcl-2 ratio (about 4-fold increase) and p53 (5-fold increase) activation. These findings indicate that NR and TR extracts exhibit anti-cancer activity through the regulation of genes involved in apoptosis. This is the first report to demonstrate the cytotoxic effect of polyphenolic extracts from L. sibiricus roots against glioma cells, but further studies are required to understand the complete mechanism of its apoptosic activity.


Apoptosis Glioma cells Gene expression Leonurus sibiricus Phenolic compounds Transformed roots 


Compliance with ethical standards

Conflicts of interest



  1. 1.
    Jovčevska I, Kočevar N. Glioma and glioblastoma—how much do we (not) know? Mol Clin Oncol. 2013;1:935–41.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Gurney JG, Kadan-Lottick N. Brain and other central nervous system tumors: rates, trends, and epidemiology. Curr Opin Oncol. 2001;13:160–6.CrossRefPubMedGoogle Scholar
  3. 3.
    Wrensch M, Minn Y. Epidemiology of primary brain tumors: current concepts and review of the literature. Neuro Oncol. 2002;4:278–99.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352:987–96.CrossRefPubMedGoogle Scholar
  5. 5.
    Gerstner ER, Duda DG, di Tomaso E, Sorensen G, Jain RK, Batchelor TT. Antiangiogenic agents for the treatment of glioblastoma. Expert Opin Investig Drugs. 2007;16:1895–908.CrossRefPubMedGoogle Scholar
  6. 6.
    Ahmed F, Islam MA, Rahman MM. Antibacterial activity of Leonurus sibiricus aerial parts. Fitoterapia. 2006;77:316–7.CrossRefPubMedGoogle Scholar
  7. 7.
    Shin HY, Kim H, Kang SM, Chang IJ, Kim SY, Jeon H, et al. Anti-inflammatory activity of motherwort (Leonurus sibiricus L.). Immunopharm Immunot. 2009;31:209–13.CrossRefGoogle Scholar
  8. 8.
    Lee MJ, Lee HS, Park SD, Moon HI, Park WH. Leonurus sibiricus herb extract suppresses oxidative stress and ameliorates hypercholesterolemia in C57BL/6 mice and TNF-alpha induced expression of adhesion molecules and lectin-like oxidized LDL receptor-1 in human umbilical vein endothelial cells. Biosci Biotechnol Biochem. 2010;74:279–84.CrossRefPubMedGoogle Scholar
  9. 9.
    Chinwala MG, Gao M, Dai J, Shao J. In vitro anticancer activities of Leonurus heterophyllus sweet (Chinese motherwort herb). J Altern Complement Med. 2003;9:511–8.CrossRefPubMedGoogle Scholar
  10. 10.
    Mazzio EA, Soliman KF. In vitro screening for the tumoricidal properties of international medicinal herbs. Phytother Res. 2009;23(3):385–98. doi: 10.1002/ptr.2636.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Rodríguez M, Estrela JM, Ortega AL. Natural polyphenols and apoptosis induction in cancer therapy. J Carcinog Mutagen. 2013;S6:004. doi: 10.4172/2157-2518.S6-004.Google Scholar
  12. 12.
    Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant. 1962;15:473–97.CrossRefGoogle Scholar
  13. 13.
    Vervliet G, Holsters M, Teuchy H, Van Montagu M, Schell J. Characterization of different plaque-forming and defective temperate phages in Agrobacterium strains. J Gen Virol. 1975;26:33–48.CrossRefPubMedGoogle Scholar
  14. 14.
    Schenk RU, Hildebrandt AC. Medium and techniques for induction of growth of monocotyledonous and dicotyledonous plant cell cultures. Can J Bot. 1972;50:199–204.CrossRefGoogle Scholar
  15. 15.
    Skała E, Kicel A, Olszewska MA, Kiss AK, Wysokińska H. Establishment of hairy root cultures of Rhaponticum carthamoides (Willd.) Iljin for the production of biomass and caffeic acid derivatives. BioMed Res Int. 2015;181098:1–11.Google Scholar
  16. 16.
    Sitarek P, Skała E, Wysokińska H, Wielanek M, Szemraj J, Toma M, et al. The effect of Leonurus sibiricus plant extracts on stimulating repair and protective activity against oxidative DNA damage in CHO cells and content of phenolic compounds. Oxid Med Cell Longev. 2015.Google Scholar
  17. 17.
    Kleihues P, Louis DN, Scheithauer BW, Rorke LB, Reifenberger G, Burger PC, et al. The WHO classification of tumors of the nervous system. J Neuropathol Exp Neurol. 2002;215–25. discussion 226–9.Google Scholar
  18. 18.
    Laigle-Donadey F, Crinie’re E, Benouaich A, Lesueur E, Mokhtari K, Hoang-Xuan K, et al. Loss of 22q chromosome is related to glioma progression and loss of 10q. J Neuro-Oncol. 2006;76:265–8. doi: 10.1007/s11060-005-7019-2.CrossRefGoogle Scholar
  19. 19.
    Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55–63.CrossRefPubMedGoogle Scholar
  20. 20.
    Herrmann M, Lorenz HM, Voll R, Grunke M, Woith W, Kalden JR. A rapid and simple method for the isolation of apoptotic DNA fragments. Nucleic Acids Res. 1994;22(24):5506–7.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Taehakkyo S, Yŏn’guso S. Medicinal plants in the Republic of Korea, Western Pacific series No. 21. World Health Organization, Regional Office for the Western Pacific. 1998.Google Scholar
  22. 22.
    Chen L, Han L, Shi Z. LY294002 enhances cytotoxicity of temozolomide in glioma by down-regulation of the PI3K/Akt pathway. Mol Med Report. 2012;5:575–9.Google Scholar
  23. 23.
    Darefsky AS, King JT, Dubrow R. Adult glioblastoma multiforme survival in the temozolomide era: a population-based analysis of surveillance. Epidemiol End Results Registries Cancer. 2012;118:2163–72.Google Scholar
  24. 24.
    Tao J, Zhang P, Liu G, Yan H, Bu X, Zhongjun M, et al. Cytotoxicity of Chinese motherwort (YiMuCao) aqueous ethanol extract is non-apoptotic and estrogen receptor independent on human breast cancer cells. J Ethnopharmacol. 2009;234–239.Google Scholar
  25. 25.
    Shi M, Cai Q, Yao L, Mao Y, Ming Y, Ouyang G. Antiproliferation and apoptosis induced by curcumin in human ovarian cancer cells. Cell Biol Int. 2006;30:221–6.CrossRefPubMedGoogle Scholar
  26. 26.
    Murthy HN, Dijkstra C, Anthony P, White DA, Davey MR, Paek KY. Establishment of Withania somnifera hairy root cultures for the production of withanolide A. J Integr Plant Biol. 2008;50(8):975–81. doi: 10.1111/j.1744-7909.2008.00680.x.CrossRefPubMedGoogle Scholar
  27. 27.
    Obrenovich ME, Nair NG, Beyaz A, Aliev G, Reddy VP. The role of polyphenolic antioxidants in health, disease, and aging. Rejuvenation Res. 2010;13:631–43.CrossRefPubMedGoogle Scholar
  28. 28.
    Stoner GD, Mukhtar H. Polyphenols as cancer chemopreventive agents. J Cell Biochem Suppl. 1995;22:169–80.CrossRefPubMedGoogle Scholar
  29. 29.
    Jang M, Cai L, Udeani GO, Slowing KV, Thomas CF. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science. 1997;275:218–20.CrossRefPubMedGoogle Scholar
  30. 30.
    Kang NJ, Shin SH, Lee HJ, Lee KW. Polyphenols as small molecular inhibitors of signaling cascades in carcinogenesis. Pharmacol Ther. 2011;130:310–24.CrossRefPubMedGoogle Scholar
  31. 31.
    Giovannini C, Masella R. Role of polyphenols in cell death control. Nutr Neurosci. 2012;15:134–49.CrossRefPubMedGoogle Scholar
  32. 32.
    Huang WY, Cai YZ, Zhang Y. Natural phenolic compounds from medicinal herbs and dietary plants: potential use for cancer prevention. Nutr Cancer. 2010;62:1–20.CrossRefPubMedGoogle Scholar
  33. 33.
    Yang JS, Che-Wei L, Yi-Shih M, Shu-Wen W, Nou-Ying T, Shin-Hwar W, et al. Chlorogenic acid induces apoptotic cell death in U937 leukemia cells through caspase and mitochondria-dependent pathways. In Vivo. 2012;26:971–8.PubMedGoogle Scholar
  34. 34.
    Chang WC, Hsieh CH, Hsiao MW, Lin WC, Hung YC, Ye JC. Caffeic acid induces apoptosis in human cervical cancer cells through the mitochondrial pathway. Taiwan J Obstet Gynecol. 2010;49(4):419–24.CrossRefPubMedGoogle Scholar
  35. 35.
    Zhang YJ, Nagao T, Tanaka T, Yang CR, Okabe H, Kouno I. Antiproliferative activity of the main constituents from Phyllanthus emblica. Biol Pharm Bull. 2004;27:251–5.CrossRefPubMedGoogle Scholar
  36. 36.
    Ouyang L, Shi Z, Zhao S, Wang FT, Zhou TT. Programmed cel death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell Prolif. 2012;45:487–98.CrossRefPubMedGoogle Scholar
  37. 37.
    Donovan M, Cotter TG. Control of mitochondrial integrity by Bcl-2 family members and caspase-independent cell death. Biochim Biophys Acta. 2004;1644:133–47.CrossRefPubMedGoogle Scholar
  38. 38.
    Salomons GS, Brady HJ, Verwijs-Janssen M, Van JD, Hart AA, Van H. The Bax alpha:Bcl-2 ratio modulates the response to dexamethasone in leukaemic cells and is highly variable in childhood acute leukaemia. Int J Cancer. 1997;71:959–65.CrossRefPubMedGoogle Scholar
  39. 39.
    Roset R, Ortet L, Gil-Gomez G. Role of Bcl-2 family members on apoptosis: what we have learned from knock-out mice. Front Biosci. 2007;12:4722–30.CrossRefPubMedGoogle Scholar
  40. 40.
    Ling YH, Liebes L, Ng B, Buckley M, Elliott PJ, Adams J. PS-341, a novel proteasome inhibitor, induces Bcl-2 phosphorylation and cleavage in association with G2-M phase arrest and apoptosis. Mol Cancer Ther. 2002;1:841–9.PubMedGoogle Scholar
  41. 41.
    D’Archivio M, Santangelo C, Scazzocchio B, Varì R, Filesi C. Modulatory effects of polyphenols on apoptosis induction: relevance for cancer prevention. Int J Mol Sci. 2008;9:213–28.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Lavin MF, Gueven N. The complexity of p53 stabilization and activation. Cell Death Differ. 2006;13:941–50.CrossRefPubMedGoogle Scholar
  43. 43.
    Vaz JA, Ferreira IC, Tavares C, Almeida GM, Martins A. Suillus collinitus methanolic extract increases p53 expression and causes cell cycle arrest and apoptosis in a breast cancer cell line. Food Chem. 2012;135:596–602.CrossRefPubMedGoogle Scholar
  44. 44.
    Lee YJ, Kuo HC, Chu CY, Wang CJ, Lin WC, Tseng TH. Involvement of tumor suppressor protein p53 and p38 MAKP in caffeic acid phenethyl ester-induced apoptosis of C6 glioma cells. Biochem Pharmacol. 2003;66:2281–9.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  • Przemysław Sitarek
    • 1
  • Ewa Skała
    • 1
  • Monika Toma
    • 2
  • Marzena Wielanek
    • 3
  • Janusz Szemraj
    • 4
  • Malgorzata Nieborowska-Skorska
    • 5
  • Maciej Kolasa
    • 6
  • Tomasz Skorski
    • 5
  • Halina Wysokińska
    • 1
  • Tomasz Śliwiński
    • 2
  1. 1.Department of Biology and Pharmaceutical BotanyMedical University of ŁódźŁódźPoland
  2. 2.Department of Molecular GeneticsUniversity of ŁódźŁódźPoland
  3. 3.Department of Plant Physiology and Biochemistry, Faculty of Biology and Environmental ProtectionUniversity of ŁódźŁódźPoland
  4. 4.Department of Medical BiochemistryMedical University of ŁódźŁódźPoland
  5. 5.Department of Microbiology and Immunology, and Fels Institute for Cancer ResearchTemple University, School of MedicinePhiladelphiaUSA
  6. 6.Department of NeurosurgeryMedical University, Copernicus Memorial HospitalŁódźPoland

Personalised recommendations