Advertisement

Tumor Biology

, Volume 37, Issue 6, pp 8229–8237 | Cite as

Stimulation of the hypoxia pathway modulates chemotherapy resistance in Hodgkin’s lymphoma cells

  • Stefanie Kewitz
  • Lars Kurch
  • Ines Volkmer
  • Martin S. Staege
Original Article

Abstract

Hodgkin’s lymphoma (HL) is a malignant disease of the lymphatic system. The therapy has been improved during the last decades but there are still patients who cannot be cured, and the therapy is associated with several adverse late effects. Therefore, we asked which genes might be involved in the chemotherapy resistance of HL cells. We observed that HL cells became more resistant against cisplatin after treatment with cobalt chloride. Therefore, we analyzed which genes were differentially expressed between cells incubated in medium with or without cobalt chloride. We found several genes which were up- or downregulated in the presence of cobalt chloride and might be involved in the modulation of chemotherapy resistance. Cobalt chloride is a hypoxia-mimetic agent. Therefore, we tested chemo-resistance and gene expression of HL cells under hypoxic conditions and confirmed the results from the cobalt chloride experiments. Taken together, activation of the hypoxia pathway led to altered gene expression and drug resistance of HL cells. Differentially expressed genes might be interesting targets for the development of future treatment strategies against drug-resistant HL.

Keywords

Hodgkin’s lymphoma Drug resistance Hypoxia Cobalt chloride Gene expression 

Notes

Acknowledgments

This work was supported by a fellowship from the Konrad-Adenauer-Stiftung (SK) and the Wilhelm-Roux-Program of the Martin Luther University Halle-Wittenberg (MSS).

Author contributions

S. K. and I. V. performed the experiments; M. S. S. designed the research; S. K. and M. S. S analyzed and discussed the data; S. K. and M. S. S wrote the paper, and L. K. contributed to the discussion.

Compliance with ethical standards

Conflicts of interest

None

Supplementary material

13277_2015_4705_MOESM1_ESM.docx (1.9 mb)
ESM 1 (DOCX 1900 kb)

References

  1. 1.
    Küppers R. Molecular biology of Hodgkin lymphoma. Hematology Am Soc Hematol Educ Program. 2009: 491–6.Google Scholar
  2. 2.
    Körholz D, Claviez A, Hasenclever D, et al. The concept of the GPOH-HD 2003 therapy study for pediatric Hodgkin’s disease: evolution in the tradition of the DAL/GPOH studies. Klin Padiatr. 2004;216:150–6.CrossRefPubMedGoogle Scholar
  3. 3.
    Mauz-Körholz C, Hasenclever D, Dörffel W, et al. Procarbazine-free OEPA-COPDAC chemotherapy in boys and standard OPPA-COPP in girls have comparable effectiveness in pediatric Hodgkin’s lymphoma: the GPOH-HD-2002 study. J Clin Oncol. 2010;28:3680–6.CrossRefPubMedGoogle Scholar
  4. 4.
    Lin HM, Teitell MA. Second malignancy after treatment of pediatric Hodgkin disease. J Pediatr Hematol Oncol. 2005;27:28–36.CrossRefPubMedGoogle Scholar
  5. 5.
    van der Kaaij MA, van Echten-Arends J, Simons AH, Kluin-Nelemans HC. Fertility preservation after chemotherapy for Hodgkin lymphoma. Hematol Oncol. 2010;28:168–79.CrossRefPubMedGoogle Scholar
  6. 6.
    Ng AK. Review of the cardiac long-term effects of therapy for Hodgkin lymphoma. Br J Haematol. 2011;154:23–31.CrossRefPubMedGoogle Scholar
  7. 7.
    Semenza GL. Expression of hypoxia-inducible factor 1: mechanisms and consequences. Biochem Pharmacol. 2000;59:47–53.CrossRefPubMedGoogle Scholar
  8. 8.
    Schofield CJ, Ratcliffe PJ. Oxygen sensing by HIF hydroxylases. Nat Rev Mol Cell Biol. 2004;5:343–54.CrossRefPubMedGoogle Scholar
  9. 9.
    Doktorova H, Hrabeta J, Khalil MA, Eckschlager T. Hypoxia-induced chemoresistance in cancer cells: the role of not only HIF-1. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2015;159:166–77.PubMedGoogle Scholar
  10. 10.
    Loboda A, Jozkowicz A, Dulak J. HIF-1 and HIF-2 transcription factors—similar but not identical. Mol Cells. 2010;29:435–42.CrossRefPubMedGoogle Scholar
  11. 11.
    Gordan JD, Bertout JA, Hu CJ, et al. HIF-2alpha promotes hypoxic cell proliferation by enhancing c-myc transcriptional activity. Cancer Cell. 2007;11:335–47.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Semenza GL. Hypoxia-inducible factor 1: control of oxygen homeostasis in health and disease. Pediatr Res. 2001;49:614–7.CrossRefPubMedGoogle Scholar
  13. 13.
    Bardos JI, Ashcroft M. Negative and positive regulation of HIF-1: a complex network. Biochim Biophys Acta. 2005;1755:107–20.PubMedGoogle Scholar
  14. 14.
    Ao Q, Su W, Guo S, et al. SENP1 desensitizes hypoxic ovarian cancer cells to cisplatin by up-regulating HIF-1α. Sci Rep. 2015;5:16396.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Yuan Y, Hilliard G, Ferguson T, Millhorn DE. Cobalt inhibits the interaction between hypoxia-inducible factor-alpha and von Hippel-Lindau protein by direct binding to hypoxia-inducible factor-alpha. J Biol Chem. 2003;278:15911–6.CrossRefPubMedGoogle Scholar
  16. 16.
    Taylor CT, Cummins EP. The role of NF-kappaB in hypoxia-induced gene expression. Ann N Y Acad Sci. 2009;1177:178–84.CrossRefPubMedGoogle Scholar
  17. 17.
    Oliver KM, Garvey JF, Ng CT, et al. Hypoxia activates NF-kappaB-dependent gene expression through the canonical signaling pathway. Antioxid Redox Signal. 2009;11:2057–64.CrossRefPubMedGoogle Scholar
  18. 18.
    Passam FH, Alexandrakis MG, Kafousi M, et al. Histological expression of angiogenic factors: VEGF, PDGFRalpha, and HIF-1alpha in Hodgkin lymphoma. Pathol Res Pract. 2009;205:11–20.CrossRefPubMedGoogle Scholar
  19. 19.
    Khandani AH, Dunphy CH, Meteesatien P, et al. Glut1 and Glut3 expression in lymphoma and their association with tumor intensity on 18F-fluorodeoxyglucose positron emission tomography. Nucl Med Commun. 2009;30:594–601.CrossRefPubMedGoogle Scholar
  20. 20.
    Shim HK, Lee WW, Park SY, et al. Relationship between FDG uptake and expressions of glucose transporter type 1, type 3, and hexokinase-II in Reed-Sternberg cells of Hodgkin lymphoma. Oncol Res. 2009;17:331–7.CrossRefPubMedGoogle Scholar
  21. 21.
    Hernandez-Luna MA, Rocha-Zavaleta L, Vega MI, Huerta-Yepez S. Hypoxia inducible factor-1α induces chemoresistance phenotype in non-Hodgkin lymphoma cell line via up-regulation of Bcl-xL. Leuk Lymphoma. 2013;54:1048–55.CrossRefPubMedGoogle Scholar
  22. 22.
    Wein F, Otto T, Lambertz P, et al. Potential role of hypoxia in early stages of Hodgkin lymphoma pathogenesis. Haematologica. 2015;100:1320–6.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Drexler HG, Gaedicke G, Lok MS, et al. Hodgkin’s disease derived cell lines HDLM-2 and L-428: comparison of morphology, immunological and isoenzyme profiles. Leuk Res. 1986;10:487–500.CrossRefPubMedGoogle Scholar
  24. 24.
    Kamesaki H, Fukuhara S, Tatsumi E, et al. Cytochemical, immunologic, chromosomal, and molecular genetic analysis of a novel cell line derived from Hodgkin’s disease. Blood. 1986;68:285–92.PubMedGoogle Scholar
  25. 25.
    Wolf J, Kapp U, Bohlen H, et al. Peripheral blood mononuclear cells of a patient with advanced Hodgkin’s lymphoma give rise to permanently growing Hodgkin-Reed Sternberg cells. Blood. 1996;87:3418–28.PubMedGoogle Scholar
  26. 26.
    Schaadt M, Fonatsch C, Kirchner H, Diehl V. Establishment of a malignant, Epstein-Barr-virus (EBV)-negative cell-line from the pleura effusion of a patient with Hodgkin’s disease. Blut. 1979;38:185–90.CrossRefPubMedGoogle Scholar
  27. 27.
    Diehl V, Kirchner HH, Burrichter H, et al. Characteristics of Hodgkin’s disease-derived cell lines. Cancer Treat Rep. 1982;66:615–32.PubMedGoogle Scholar
  28. 28.
    Hoennscheidt C, Max D, Richter N, Staege MS. Expression of CD4 on Epstein-Barr virus-immortalized B cells. Scand J Immunol. 2009;70:216–25.CrossRefPubMedGoogle Scholar
  29. 29.
    Wang X, Spandidos A, Wang H, Seed B. PrimerBank: a PCR primer database for quantitative gene expression analysis, 2012 update. Nucleic Acids Res. 2012;40:D1144–9.CrossRefPubMedGoogle Scholar
  30. 30.
    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 2001;25:402–8.CrossRefPubMedGoogle Scholar
  31. 31.
    Winkler C, Steingrube DS, Altermann W, et al. Hodgkin’s lymphoma RNA-transfected dendritic cells induce cancer/testis antigen-specific immune responses. Cancer Immunol Immunother. 2012;61:1769–79.CrossRefPubMedGoogle Scholar
  32. 32.
    Sturn A, Quackenbush J, Trajanoski Z. Genesis: cluster analysis of microarray data. Bioinformatics. 2002;18:207–8.CrossRefPubMedGoogle Scholar
  33. 33.
    Staege MS, Banning-Eichenseer U, Weissflog G, et al. Gene expression profiles of Hodgkin’s lymphoma cell lines with different sensitivity to cytotoxic drugs. Exp Hematol. 2008;36:886–96.CrossRefPubMedGoogle Scholar
  34. 34.
    Ho VT, Bunn HF. Effects of transition metals on the expression of the erythropoietin gene: further evidence that the oxygen sensor is a heme protein. Biochem Biophys Res Commun. 1996;223:175–80.CrossRefPubMedGoogle Scholar
  35. 35.
    Shannon AM, Bouchier-Hayes DJ, Condron CM, Toomey D. Tumour hypoxia, chemotherapeutic resistance and hypoxia-related therapies. Cancer Treat Rev. 2003;29:297–307.CrossRefPubMedGoogle Scholar
  36. 36.
    Kizaka-Kondoh S, Inoue M, Harada H, Hiraoka M. Tumor hypoxia: a target for selective cancer therapy. Cancer Sci. 2003;94:1021–8.CrossRefPubMedGoogle Scholar
  37. 37.
    Lu X, Kang Y. Hypoxia and hypoxia-inducible factors: master regulators of metastasis. Clin Cancer Res. 2010;16:5928–35.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Chaudary N, Hill RP. Hypoxia and metastasis. Clin Cancer Res. 2007;13:1947–9.CrossRefPubMedGoogle Scholar
  39. 39.
    Talks KL, Turley H, Gatter KC, et al. The expression and distribution of the hypoxia-inducible factors HIF-1alpha and HIF-2alpha in normal human tissues, cancers, and tumor-associated macrophages. Am J Pathol. 2000;157:411–21.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Zhong H, De Marzo AM, Laughner E, et al. Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. Cancer Res. 1999;59:5830–5.PubMedGoogle Scholar
  41. 41.
    Wang Y, Tang Z, Xue R, et al. Differential response to CoCl2-stimulated hypoxia on HIF-1α, VEGF, and MMP-2 expression in ligament cells. Mol Cell Biochem. 2012;360:235–42.CrossRefPubMedGoogle Scholar
  42. 42.
    Sinha R, Shenoy PJ, King N, et al. Vinorelbine, paclitaxel, etoposide, cisplatin, and cytarabine (VTEPA) is an effective second salvage therapy for relapsed/refractory Hodgkin lymphoma. Clin Lymphoma Myeloma Leuk. 2013;13:657–63.CrossRefPubMedGoogle Scholar
  43. 43.
    Hawkes EA, Barton S, Cunningham D, et al. GEM-P chemotherapy is active in the treatment of relapsed Hodgkin lymphoma. Ann Hematol. 2014;93:827–34.CrossRefPubMedGoogle Scholar
  44. 44.
    Li F, Huang L, Su XL, et al. Inhibition of nuclear factor-κB activity enhanced chemosensitivity to cisplatin in human lung adeno-carcinoma A549 cells under chemical hypoxia conditions. Chin Med J (Engl). 2013;126:3276–82.Google Scholar
  45. 45.
    Kewitz S, Staege MS. Expression and regulation of the endogenous retrovirus 3 in Hodgkin’s lymphoma cells. Front Oncol. 2013;3:179.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Ebert MP, Günther T, Hoffmann J, et al. Expression of metallothionein II in intestinal metaplasia, dysplasia, and gastric cancer. Cancer Res. 2000;60:1995–2001.PubMedGoogle Scholar
  47. 47.
    Murphy BJ, Laderoute KR, Chin RJ, Sutherland RM. Metallothionein IIA is up-regulated by hypoxia in human A431 squamous carcinoma cells. Cancer Res. 1994;54:5808–10.PubMedGoogle Scholar
  48. 48.
    Yamasaki M, Nomura T, Sato F, Mimata H. Metallothionein is up-regulated under hypoxia and promotes the survival of human prostate cancer cells. Oncol Rep. 2007;18:1145–53.PubMedGoogle Scholar
  49. 49.
    Moreno-Smith M, Halder JB, Meltzer PS, et al. ATP11B mediates platinum resistance in ovarian cancer. J Clin Invest. 2013;123:2119–30.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Drayton RM, Dudziec E, Peter S, et al. Reduced expression of miRNA-27a modulates cisplatin resistance in bladder cancer by targeting the cystine/glutamate exchanger SLC7A11. Clin Cancer Res. 2014;20:1990–2000.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Januchowski R, Zawierucha P, Ruciński M, et al. Drug transporter expression profiling in chemoresistant variants of the A2780 ovarian cancer cell line. Biomed Pharmacother. 2014;68:447–53.CrossRefPubMedGoogle Scholar
  52. 52.
    Su J, Wu S, Tang W, et al. Reduced SLC27A2 induces cisplatin resistance in lung cancer stem cells by negatively regulating Bmi1-ABCG2 signaling. Mol Carcinog. 2015. doi: 10.1002/mc.22430.Google Scholar
  53. 53.
    Jones RJ, Gocke CD, Kasamon YL, et al. Circulating clonotypic B cells in classic Hodgkin lymphoma. Blood. 2009;113:5920–6.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Klimm B, Goergen H, Fuchs M, et al. Impact of risk factors on outcomes in early-stage Hodgkin’s lymphoma: an analysis of international staging definitions. Ann Oncol. 2013;24:3070–6.CrossRefPubMedGoogle Scholar
  55. 55.
    Kurch L, Hasenclever D, Tchavdarova L, et al. Non-FDG-avid areas inside a tumour mass in Paediatric Hodgkin Lymphoma (PHL) patients—a new risk factor?. EJNM. 2014; 41 (Suppl 2), Abstract.Google Scholar
  56. 56.
    Kurch L, Hasenclever D, Tchavdarova L, et al. Impact of Non-FDG-avid areas inside a tumour mass in Paediatric Hodgkin Lymphoma (PHL) patients. Klin Padiatr. 2014;226:0–27. doi: 10.1055/s-0034-1371171.CrossRefGoogle Scholar
  57. 57.
    Niu N, Qin Y, Fridley BL, et al. Radiation pharmacogenomics: a genome-wide association approach to identify radiation response biomarkers using human lymphoblastoid cell lines. Genome Res. 2010;20:1482–92.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Su YF, Liang CY, Huang CY, et al. A putative novel protein, DEPDC1B, is overexpressed in oral cancer patients, and enhanced anchorage-independent growth in oral cancer cells that is mediated by Rac1 and ERK. J Biomed Sci. 2014;21:67.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Schmitz AA, Govek EE, Böttner B, Van Aelst L. Rho GTPases: signaling, migration, and invasion. Exp Cell Res. 2000;261:1–12.CrossRefPubMedGoogle Scholar
  60. 60.
    Yang Y, Liu L, Cai J, et al. DEPDC1B enhances migration and invasion of non-small cell lung cancer cells via activating Wnt/β-catenin signaling. Biochem Biophys Res Commun. 2014;450:899–905.CrossRefPubMedGoogle Scholar
  61. 61.
    Liston P, Fong WG, Kelly NL, et al. Identification of XAF1 as an antagonist of XIAP anti-Caspase activity. Nat Cell Biol. 2001;3:128–33.CrossRefPubMedGoogle Scholar
  62. 62.
    Fong WG, Liston P, Rajcan-Separovic E, et al. Expression and genetic analysis of XIAP-associated factor 1 (XAF1) in cancer cell lines. Genomics. 2000;70:113–22.CrossRefPubMedGoogle Scholar
  63. 63.
    Zou B, Chim CS, Zeng H, et al. Correlation between the single-site CpG methylation and expression silencing of the XAF1 gene in human gastric and colon cancers. Gastroenterology. 2006;131:1835–43.CrossRefPubMedGoogle Scholar
  64. 64.
    Zhu LM, Shi DM, Dai Q, et al. Tumor suppressor XAF1 induces apoptosis, inhibits angiogenesis and inhibits tumor growth in hepatocellular carcinoma. Oncotarget. 2014;5:5403–15.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Huang J, Yao WY, Zhu Q, et al. XAF1 as a prognostic biomarker and therapeutic target in pancreatic cancer. Cancer Sci. 2010;101:559–67.CrossRefPubMedGoogle Scholar
  66. 66.
    Wang Y, Mao H, Hao Q, et al. Association of expression of XIAP-associated factor 1 (XAF1) with clinicopathologic factors, overall survival, microvessel density and cisplatin-resistance in ovarian cancer. Regul Pept. 2012;178:36–42.CrossRefPubMedGoogle Scholar
  67. 67.
    Tu SP, Liston P, Cui JT, et al. Restoration of XAF1 expression induces apoptosis and inhibits tumor growth in gastric cancer. Int J Cancer. 2009;125:688–97.CrossRefPubMedGoogle Scholar
  68. 68.
    Tu SP, Sun YW, Cui JT, et al. Tumor suppressor XIAP-Associated factor 1 (XAF1) cooperates with tumor necrosis factor-related apoptosis-inducing ligand to suppress colon cancer growth and trigger tumor regression. Cancer. 2010;116:1252–63.CrossRefPubMedGoogle Scholar
  69. 69.
    Zhao WJ, Deng BY, Wang XM, et al. XIAP associated factor 1 (XAF1) represses expression of X-linked inhibitor of apoptosis protein (XIAP) and regulates invasion, cell cycle, apoptosis, and cisplatin sensitivity of ovarian carcinoma cells. Asian Pac J Cancer Prev. 2015;16:2453–8.CrossRefPubMedGoogle Scholar
  70. 70.
    Ju WC, Huang GB, Luo XY, et al. X-linked inhibitor of apoptosis-associated factor l (XAFl) enhances the sensitivity of colorectal cancer cells to cisplatin. Med Oncol. 2014;31:273.CrossRefPubMedGoogle Scholar
  71. 71.
    Ma B, Wang Y, Zhou X, et al. Synergistic suppression effect on tumor growth of hepatocellular carcinoma by combining oncolytic adenovirus carrying XAF1 with cisplatin. J Cancer Res Clin Oncol. 2015;141:419–29.CrossRefPubMedGoogle Scholar
  72. 72.
    Scott DW, Chan FC, Hong F, et al. Gene expression-based model using formalin-fixed paraffin-embedded biopsies predicts overall survival in advanced-stage classical Hodgkin lymphoma. J Clin Oncol. 2013;31:692–700.CrossRefPubMedGoogle Scholar
  73. 73.
    Steidl C, Diepstra A, Lee T, et al. Gene expression profiling of microdissected Hodgkin Reed-Sternberg cells correlates with treatment outcome in classical Hodgkin lymphoma. Blood. 2012;120:3530–40.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Stefanie Kewitz
    • 1
    • 2
  • Lars Kurch
    • 3
  • Ines Volkmer
    • 1
  • Martin S. Staege
    • 1
  1. 1.Department of PediatricsMartin Luther University Halle-WittenbergHalleGermany
  2. 2.Department of Pediatric Hematology and OncologyJustus-Liebig-University GiessenGiessenGermany
  3. 3.Department of Nuclear MedicineUniversity Hospital of LeipzigLeipzigGermany

Personalised recommendations