Skip to main content

Research advances in HMGN5 and cancer

Abstract

High-mobility group nucleosome-binding domain 5 (HMGN5) is a new member of the high-mobility group N (HMGN) protein family that is involved in nucleosomal binding and transcriptional activation. It was first discovered in mouse, and recent studies found that the expressions of HMGN5 in many human cancers were also highly regulated, such as prostate, bladder, breast, and lung and clear cell renal cell carcinoma. Numerous reports have demonstrated that HMGN5 plays significant roles in many biological and pathological conditions, such as in developmental defects, hypersensitivity to stress, embryonic stem cell differentiation, and tumor progression. Importantly, deficiency of HMGN5 has been shown to be linked to cancer cell growth, cell cycle regulation, migration, invasion, and clinical outcomes, and it represents a promising therapeutic target for many malignant tumors. In the present review, we provide an overview of the current knowledge concerning the role of HMGN5 in cancer development and progression.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. 1.

    Hock R, Furusawa T, Ueda T, Bustin M. HMG chromosomal proteins in development and disease. Trends Cell Biol. 2007;17(2):72–9.

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Postnikov Y, Bustin M. Regulation of chromatin structure and function by HMGN proteins. Biochim Biophys Acta. 2010;1799(1–2):62–8.

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Rochman M, Taher L, Kurahashi T, Cherukuri S, Uversky VN, Landsman D, et al. Effects of HMGN variants on the cellular transcription profile. Nucleic Acids Res. 2011;39(10):4076–87.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Kugler JE, Deng T, Bustin M. The HMGN family of chromatin-binding proteins: dynamic modulators of epigenetic processes. Biochim Biophys Acta. 2012;1819(7):652–6.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Furusawa T, Cherukuri S. Developmental function of HMGN proteins. Biochim Biophys Acta. 2010;1799(1–2):69–73.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Rochman M, Malicet C, Bustin M. HMGN5/NSBP1: a new member of the HMGN protein family that affects chromatin structure and function. Biochim Biophys Acta. 2010;1799(1–2):86–92.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Rochman M, Postnikov Y, Correll S, Malicet C, Wincovitch S, Karpova TS, et al. The interaction of NSBP1/HMGN5 with nucleosomes in euchromatin counteracts linker histone-mediated chromatin compaction and modulates transcription. Mol Cell. 2009;35(5):642–56.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Shirakawa H, Landsman D, Postnikov YV, Bustin M. NBP-45, a novel nucleosomal binding protein with a tissue-specific and developmentally regulated expression. J Biol Chem. 2000;275(9):6368–74.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    King LM, Francomano CA. Characterization of a human gene encoding nucleosomal binding protein NSBP1. Genomics. 2001;71(2):163–73.

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65(1):5–29.

    Article  PubMed  Google Scholar 

  11. 11.

    Song G, Zhou LQ, Weng M, He Q, He ZS, Hao JR, et al. Expression of nucleosomal binding protein 1 in normal prostate benign prostate hyperplasia, and prostate cancer and significance thereof. Zhonghua Yi Xue Za Zhi. 2006;86(28):1962–5.

    CAS  PubMed  Google Scholar 

  12. 12.

    Jiang N, Zhou LQ, Zhang XY. Downregulation of the nucleosome-binding protein 1 (NSBP1) gene can inhibit the in vitro and in vivo proliferation of prostate cancer cells. Asian J Androl. 2010;12(5):709–17.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Zhang XY, Guo ZQ, Ji SQ, Zhang M, Jiang N, Li XS, et al. Small interfering RNA targeting HMGN5 induces apoptosis via modulation of a mitochondrial pathway and Bcl-2 family proteins in prostate cancer cells. Asian J Androl. 2012;14(3):487–92.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Su B, Shi B, Tang Y, Guo Z, Yu X, He X, et al. HMGN5 knockdown sensitizes prostate cancer cells to ionizing radiation. Prostate. 2015;75(1):33–44.

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Huang CY, Chang YJ, Luo SD, Uyanga B, Lin FY, Tai CJ et al. Maspin mediates the gemcitabine sensitivity of hormone-independent prostate cancer. Tumour Biol J Int Soc Oncodev Biol Med. 2015. doi:10.1007/s13277-015-4083-x.

  16. 16.

    Guo Z, Zhang X, Li X, Xie F, Su B, Zhang M, et al. Expression of oncogenic HMGN5 increases the sensitivity of prostate cancer cells to gemcitabine. Oncol Rep. 2015;33(3):1519–25.

    CAS  PubMed  Google Scholar 

  17. 17.

    Wei P, Qiao B, Li Q, Han X, Zhang H, Huo Q, et al. microRNA-340 suppresses tumorigenic potential of prostate cancer cells by targeting high-mobility group nucleosome-binding domain 5. DNA Cell Biol. 2015. doi:10.1089/dna.2015.3021.

  18. 18.

    Wahafu W, He ZS, Zhang XY, Zhang CJ, Yao K, Hao H, et al. The nucleosome binding protein NSBP1 is highly expressed in human bladder cancer and promotes the proliferation and invasion of bladder cancer cells. Tumour Biol J Int Soc Oncodev Biol Med. 2011;32(5):931–9.

    CAS  Article  Google Scholar 

  19. 19.

    Gan Y, Tan J, Yang J, Zhou Y, Dai Y, He L, et al. Knockdown of HMGN5 suppresses the viability and invasion of human urothelial bladder cancer 5637 cells in vitro and in vivo. Med Oncol. 2015;32(4):136.

    Article  PubMed  Google Scholar 

  20. 20.

    Yao K, He L, Gan Y, Zeng Q, Dai Y, Tan J. MiR-186 suppresses the growth and metastasis of bladder cancer by targeting NSBP1. Diagn Pathol. 2015;10:146.

    Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Zhao Z, Wu F, Ding S, Sun L, Liu Z, Ding K, et al. Label-free quantitative proteomic analysis reveals potential biomarkers and pathways in renal cell carcinoma. Tumour Biol J Int Soc Oncodev Biol Med. 2015;36(2):939–51.

    CAS  Article  Google Scholar 

  22. 22.

    Brugarolas J. Molecular genetics of clear-cell renal cell carcinoma. J Clin Oncol Off J Am Soc Clin Oncol. 2014;32(18):1968–76.

    CAS  Article  Google Scholar 

  23. 23.

    Ji SQ, Yao L, Zhang XY, Li XS, Zhou LQ. Knockdown of the nucleosome binding protein 1 inhibits the growth and invasion of clear cell renal cell carcinoma cells in vitro and in vivo. J Exp Clin Cancer Res. 2012;31:22.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Chen P, Wang XL, Ma ZS, Xu Z, Jia B, Ren J, et al. Knockdown of HMGN5 expression by RNA interference induces cell cycle arrest in human lung cancer cells. Asian Pac J Cancer Prev. 2012;13(7):3223–8.

    Article  PubMed  Google Scholar 

  25. 25.

    Li DQ, Hou YF, Wu J, Chen Y, Lu JS, Di GH, et al. Gene expression profile analysis of an isogenic tumour metastasis model reveals a functional role for oncogene AF1Q in breast cancer metastasis. Eur J Cancer. 2006;42(18):3274–86.

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Weng M, Song F, Chen J, Wu J, Qin J, Jin T, et al. The high-mobility group nucleosome-binding domain 5 is highly expressed in breast cancer and promotes the proliferation and invasion of breast cancer cells. Tumour Biol J Int Soc Oncodev Biol Med. 2015;36(2):959–66.

    CAS  Article  Google Scholar 

  27. 27.

    Moore DD, Luu HH. Osteosarcoma. Cancer Treat Res. 2014;162:65–92.

    Article  PubMed  Google Scholar 

  28. 28.

    Zhou X, Yuan B, Yuan W, Wang C, Gao R, Wang J. The expression and clinical significance of high mobility group nucleosome binding domain 5 in human osteosarcoma. Tumour Biol J Int Soc Oncodev Biol Med. 2014;35(7):6539–47.

    CAS  Article  Google Scholar 

  29. 29.

    Zhou W, Hao M, Du X, Chen K, Wang G, Yang J. Advances in targeted therapy for osteosarcoma. Discov Med. 2014;17(96):301–7.

    PubMed  Google Scholar 

  30. 30.

    Desandes E. Survival from adolescent cancer. Cancer Treat Rev. 2007;33(7):609–15.

    Article  PubMed  Google Scholar 

  31. 31.

    Xiao X, Wang W, Wang Z. The role of chemotherapy for metastatic, relapsed and refractory osteosarcoma. Paediatr Drugs. 2014;16(6):503–12.

    Article  PubMed  Google Scholar 

  32. 32.

    Yang C, Gao R, Wang J, Yuan W, Wang C, Zhou X. High-mobility group nucleosome-binding domain 5 increases drug resistance in osteosarcoma through upregulating autophagy. Tumour Biol J Int Soc Oncodev Biol Med. 2014;35(7):6357–63.

    CAS  Article  Google Scholar 

  33. 33.

    Qu J, Yan R, Chen J, Xu T, Zhou J, Wang M, et al. HMGN5: a potential oncogene in gliomas. J Neuro-Oncol. 2011;104(3):729–36.

    CAS  Article  Google Scholar 

  34. 34.

    Tsai JH, Yang J. Epithelial-mesenchymal plasticity in carcinoma metastasis. Genes Dev. 2013;27(20):2192–206.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Spano D, Heck C, De Antonellis P, Christofori G, Zollo M. Molecular networks that regulate cancer metastasis. Semin Cancer Biol. 2012;22(3):234–49.

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Su Z, Yang Z, Xu Y, Chen Y, Yu Q. Apoptosis, autophagy, necroptosis, and cancer metastasis. Mol Cancer. 2015;14:48.

    Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Acloque H, Adams MS, Fishwick K, Bronner-Fraser M, Nieto MA. Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease. J Clin Invest. 2009;119(6):1438–49.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15(3):178–96.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Cao H, Xu E, Liu H, Wan L, Lai M. Epithelial-mesenchymal transition in colorectal cancer metastasis: a system review. Pathol Res Pract. 2015;211(8):557–69.

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Wong IY, Javaid S, Wong EA, Perk S, Haber DA, Toner M, et al. Collective and individual migration following the epithelial-mesenchymal transition. Nat Mater. 2014;13(11):1063–71.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Yilmaz M, Christofori G. EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev. 2009;28(1–2):15–33.

    Article  PubMed  Google Scholar 

  42. 42.

    Garg M. Targeting microRNAs in epithelial-to-mesenchymal transition-induced cancer stem cells: therapeutic approaches in cancer. Expert Opin Ther Targets. 2015;19(2):285–97.

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Zaravinos A. The regulatory role of microRNAs in EMT and cancer. J Oncol. 2015;2015:865816.

    Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Yun SJ, Kim WJ. Role of the epithelial-mesenchymal transition in bladder cancer: from prognosis to therapeutic target. Korean J Urol. 2013;54(10):645–50.

    Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Xiong D, Liou Y, Shu J, Li D, Zhang L, Chen J. Down-regulating ribonuclease inhibitor enhances metastasis of bladder cancer cells through regulating epithelial-mesenchymal transition and ILK signaling pathway. Exp Mol Pathol. 2014;96(3):411–21.

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    McConkey DJ, Choi W, Marquis L, Martin F, Williams MB, Shah J, et al. Role of epithelial-to-mesenchymal transition (EMT) in drug sensitivity and metastasis in bladder cancer. Cancer Metastasis Rev. 2009;28(3–4):335–44.

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Wheelock MJ, Shintani Y, Maeda M, Fukumoto Y, Johnson KR. Cadherin switching. J Cell Sci. 2008;121(Pt 6):727–35.

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Jeanes A, Gottardi CJ, Yap AS. Cadherins and cancer: how does cadherin dysfunction promote tumor progression? Oncogene. 2008;27(55):6920–9.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Stemmler MP. Cadherins in development and cancer. Mol BioSyst. 2008;4(8):835–50.

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Bryan RT, Tselepis C. Cadherin switching and bladder cancer. J Urol. 2010;184(2):423–31.

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Roy R, Yang J, Moses MA. Matrix metalloproteinases as novel biomarkers and potential therapeutic targets in human cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2009;27(31):5287–97.

    CAS  Article  Google Scholar 

  52. 52.

    Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell. 2010;141(1):52–67.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer. 2002;2(3):161–74.

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Yen JH, Kocieda VP, Jing H, Ganea D. Prostaglandin E2 induces matrix metalloproteinase 9 expression in dendritic cells through two independent signaling pathways leading to activator protein 1 (AP-1) activation. J Biol Chem. 2011;286(45):38913–23.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Murphy DA, Courtneidge SA. The ‘ins’ and ‘outs’ of podosomes and invadopodia: characteristics, formation and function. Nat Rev Mol Cell Biol. 2011;12(7):413–26.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Moroz A, Delella FK, Almeida R, Lacorte LM, Favaro WJ, Deffune E, et al. Finasteride inhibits human prostate cancer cell invasion through MMP2 and MMP9 downregulation. PLoS One. 2013;8(12):e84757.

    Article  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Yan Y, Liang H, Li T, Li M, Li R, Qin X, et al. The MMP-1, MMP-2, and MMP-9 gene polymorphisms and susceptibility to bladder cancer: a meta-analysis. Tumour Biol J Int Soc Oncodev Biol Med. 2014;35(4):3047–52.

    CAS  Article  Google Scholar 

  58. 58.

    Lu H, Cao X, Zhang H, Sun G, Fan G, Chen L, et al. Imbalance between MMP-2, 9 and TIMP-1 promote the invasion and metastasis of renal cell carcinoma via SKP2 signaling pathways. Tumour Biol J Int Soc Oncodev Biol Med. 2014;35(10):9807–13.

    CAS  Article  Google Scholar 

  59. 59.

    Yang J, Kuang XR, Lv PT, Yan XX. Thymoquinone inhibits proliferation and invasion of human nonsmall-cell lung cancer cells via ERK pathway. Tumour Biol J Int Soc Oncodev Biol Med. 2015;36(1):259–69.

    Article  Google Scholar 

  60. 60.

    Zhang Y, Pan T, Zhong X, Cheng C. Androgen receptor promotes esophageal cancer cell migration and proliferation via matrix metalloproteinase 2. Tumour Biol J Int Soc Oncodev Biol Med. 2015;36(8):5859–64.

    CAS  Article  Google Scholar 

  61. 61.

    Zhang MX, Xu XM, Zhang P, Han NN, Deng JJ, Yu TT, et al. Effect of silencing NEK2 on biological behaviors of HepG2 in human hepatoma cells and MAPK signal pathway. Tumour Biol J Int Soc Oncodev Biol Med. 2015. doi:10.1007/s13277-015-3993-y.

  62. 62.

    Ganguly K, Rejmak E, Mikosz M, Nikolaev E, Knapska E, Kaczmarek L. Matrix metalloproteinase (MMP) 9 transcription in mouse brain induced by fear learning. J Biol Chem. 2013;288(29):20978–91.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Liu SJ, Yin CX, Ding MC, Xia SY, Shen QM, Wu JD. Berberine suppresses in vitro migration of human aortic smooth muscle cells through the inhibitions of MMP-2/9, u-PA, AP-1, and NF-kappaB. BMB Rep. 2014;47(7):388–92.

    Article  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Yoo SY, Kwon SM. Angiogenesis and its therapeutic opportunities. Mediat Inflamm. 2013;2013:127170.

    Article  Google Scholar 

  65. 65.

    Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011;473(7347):298–307.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Jain RK. Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia. Cancer Cell. 2014;26(5):605–22.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Moens S, Goveia J, Stapor PC, Cantelmo AR, Carmeliet P. The multifaceted activity of VEGF in angiogenesis—implications for therapy responses. Cytokine Growth Factor Rev. 2014;25(4):473–82.

    CAS  Article  PubMed  Google Scholar 

  68. 68.

    Liang X, Xu F, Li X, Ma C, Zhang Y, Xu W. VEGF signal system: the application of antiangiogenesis. Curr Med Chem. 2014;21(7):894–910.

    CAS  Article  PubMed  Google Scholar 

  69. 69.

    Cook KM, Figg WD. Angiogenesis inhibitors: current strategies and future prospects. CA Cancer J Clin. 2010;60(4):222–43.

    Article  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Le Bras B, Barallobre MJ, Homman-Ludiye J, Ny A, Wyns S, Tammela T, et al. VEGF-C is a trophic factor for neural progenitors in the vertebrate embryonic brain. Nat Neurosci. 2006;9(3):340–8.

    Article  PubMed  Google Scholar 

  71. 71.

    Xu H, Zhang T, Man GC, May KE, Becker CM, Davis TN, et al. Vascular endothelial growth factor C is increased in endometrium and promotes endothelial functions, vascular permeability and angiogenesis and growth of endometriosis. Angiogenesis. 2013;16(3):541–51.

    CAS  Article  PubMed  Google Scholar 

  72. 72.

    Alitalo A, Detmar M. Interaction of tumor cells and lymphatic vessels in cancer progression. Oncogene. 2012;31(42):4499–508.

    CAS  Article  PubMed  Google Scholar 

  73. 73.

    Kondo Y, Kanzawa T, Sawaya R, Kondo S. The role of autophagy in cancer development and response to therapy. Nat Rev Cancer. 2005;5(9):726–34.

    CAS  Article  PubMed  Google Scholar 

  74. 74.

    Amaravadi RK, Lippincott-Schwartz J, Yin XM, Weiss WA, Takebe N, Timmer W, et al. Principles and current strategies for targeting autophagy for cancer treatment. Clin Cancer Res Off J Am Assoc Cancer Res. 2011;17(4):654–66.

    CAS  Article  Google Scholar 

  75. 75.

    Valente G, Morani F. Expression and clinical significance of the autophagy proteins BECLIN 1 and LC3 in ovarian cancer. BioMed Res Int. 2014. doi:10.1155/2014/462658.

  76. 76.

    Sun Y, Liu JH, Jin L, Lin SM, Yang Y, Sui YX, et al. Over-expression of the Beclin1 gene upregulates chemosensitivity to anti-cancer drugs by enhancing therapy-induced apoptosis in cervix squamous carcinoma CaSki cells. Cancer Lett. 2010;294(2):204–10.

    CAS  Article  PubMed  Google Scholar 

  77. 77.

    Huang R, Liu W. Identifying an essential role of nuclear LC3 for autophagy. Autophagy. 2015;11(5):852–3.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Randhawa R, Sehgal M, Singh TR, Duseja A, Changotra H. Unc-51 like kinase 1 (ULK1) in silico analysis for biomarker identification: a vital component of autophagy. Gene. 2015;562(1):40–9.

    CAS  Article  PubMed  Google Scholar 

  79. 79.

    Fan YJ, Zong WX. The cellular decision between apoptosis and autophagy. Chin J Cancer. 2013;32(3):121–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    El-Khattouti A, Selimovic D, Haikel Y, Hassan M. Crosstalk between apoptosis and autophagy: molecular mechanisms and therapeutic strategies in cancer. J Cell Death. 2013;6:37–55.

    PubMed  PubMed Central  Google Scholar 

  81. 81.

    Kang MH, Reynolds CP. Bcl-2 inhibitors: targeting mitochondrial apoptotic pathways in cancer therapy. Clin Cancer Res Off J Am Assoc Cancer Res. 2009;15(4):1126–32.

    CAS  Article  Google Scholar 

  82. 82.

    Juraver-Geslin HA, Durand BC. Early development of the neural plate: new roles for apoptosis and for one of its main effectors caspase-3. Genesis (New York, NY: 2000). 2015;53(2):203–24.

    CAS  Article  Google Scholar 

  83. 83.

    Gao L, Nieters A, Brenner H. Cell proliferation-related genetic polymorphisms and gastric cancer risk: systematic review and meta-analysis. Eur J Hum Genet. 2009;17(12):1658–67.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  84. 84.

    De Falco M, De Luca A. Cell cycle as a target of antineoplastic drugs. Curr Pharm Des. 2010;16(12):1417–26.

    Article  PubMed  Google Scholar 

  85. 85.

    Blomme J, Inze D, Gonzalez N. The cell-cycle interactome: a source of growth regulators? J Exp Bot. 2014;65(10):2715–30.

    CAS  Article  PubMed  Google Scholar 

  86. 86.

    Liang S, Mu K, Wang Y, Zhou Z, Zhang J, Sheng Y, et al. CyclinD1, a prominent prognostic marker for endometrial diseases. Diagn Pathol. 2013;8:138.

    Article  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Qu DW, Xu HS, Han XJ, Wang YL, Ouyang CJ. Expression of cyclinD1 and Ki-67 proteins in gliomas and its clinical significance. Eur Rev Med Pharmacol Sci. 2014;18(4):516–9.

    PubMed  Google Scholar 

  88. 88.

    Gavet O, Pines J. Progressive activation of CyclinB1-Cdk1 coordinates entry to mitosis. Dev Cell. 2010;18(4):533–43.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Feng W, Cai D, Zhang B, Lou G, Zou X. Combination of HDAC inhibitor TSA and silibinin induces cell cycle arrest and apoptosis by targeting survivin and cyclinB1/Cdk1 in pancreatic cancer cells. Biomed Pharmacother. 2015;74:257–64.

    CAS  Article  PubMed  Google Scholar 

  90. 90.

    Wolf F, Wandke C, Isenberg N, Geley S. Dose-dependent effects of stable cyclin B1 on progression through mitosis in human cells. EMBO J. 2006;25(12):2802–13.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Engelman JA. Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer. 2009;9(8):550–62.

    CAS  Article  PubMed  Google Scholar 

  92. 92.

    Dong Y, Liang G, Yuan B, Yang C, Gao R, Zhou X. MALAT1 promotes the proliferation and metastasis of osteosarcoma cells by activating the PI3K/Akt pathway. Tumour Biol J Int Soc Oncodev Biol Med. 2015;36(3):1477–86.

    CAS  Article  Google Scholar 

  93. 93.

    Zhang L, Wang H, Zhu J, Ding K, Xu J. FTY720 reduces migration and invasion of human glioblastoma cell lines via inhibiting the PI3K/AKT/mTOR/p70S6K signaling pathway. Tumour Biol J Int Soc Oncodev Biol Med. 2014;35(11):10707–14.

    CAS  Article  Google Scholar 

  94. 94.

    Zhen Y, Ye Y, Yu X, Mai C, Zhou Y, Chen Y, et al. Reduced CTGF expression promotes cell growth, migration, and invasion in nasopharyngeal carcinoma. PLoS One. 2014;8(6):e64976.

    Article  PubMed  Google Scholar 

  95. 95.

    Reddy KB, Nabha SM, Atanaskova N. Role of MAP kinase in tumor progression and invasion. Cancer Metastasis Rev. 2003;22(4):395–403.

    CAS  Article  PubMed  Google Scholar 

  96. 96.

    Krueger JS, Keshamouni VG, Atanaskova N, Reddy KB. Temporal and quantitative regulation of mitogen-activated protein kinase (MAPK) modulates cell motility and invasion. Oncogene. 2001;20(31):4209–18.

    CAS  Article  PubMed  Google Scholar 

  97. 97.

    Zhang T, Yang D, Fan Y, Xie P, Li H. Epigallocatechin-3-gallate enhances ischemia/reperfusion-induced apoptosis in human umbilical vein endothelial cells via AKT and MAPK pathways. Apoptosis Int J Programmed Cell Death. 2009;14(10):1245–54.

    CAS  Article  Google Scholar 

  98. 98.

    Caceres LC, Bonacci GR, Sanchez MC, Chiabrando GA. Activated alpha(2) macroglobulin induces matrix metalloproteinase 9 expression by low-density lipoprotein receptor-related protein 1 through MAPK-ERK1/2 and NF-kappaB activation in macrophage-derived cell lines. J Cell Biochem. 2010;111(3):607–17.

    CAS  Article  PubMed  Google Scholar 

  99. 99.

    Xu T, Wang NS, Fu LL, Ye CY, Yu SQ, Mei CL. Celecoxib inhibits growth of human autosomal dominant polycystic kidney cyst-lining epithelial cells through the VEGF/Raf/MAPK/ERK signaling pathway. Mol Biol Rep. 2012;39(7):7743–53.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  100. 100.

    Elsum IA, Martin C, Humbert PO. Scribble regulates an EMT polarity pathway through modulation of MAPK-ERK signaling to mediate junction formation. J Cell Sci. 2013;126(Pt 17):3990–9.

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xiaoqing Sun.

Ethics declarations

Conflicts of interest

None

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shi, Z., Tang, R., Wu, D. et al. Research advances in HMGN5 and cancer. Tumor Biol. 37, 1531–1539 (2016). https://doi.org/10.1007/s13277-015-4693-3

Download citation

Keywords

  • High-mobility group protein nucleosome-binding domain 5
  • Cancer
  • Metastasis
  • Autophagy
  • Apoptosis