Advertisement

Tumor Biology

, Volume 37, Issue 7, pp 9771–9779 | Cite as

Prognostic impact and potential interaction of EGFR and c-Met in the progression of esophageal squamous cell carcinoma

  • Haixing Wang
  • Dongxian Jiang
  • Qi Song
  • Chen Xu
  • Yuan Shi
  • Xiaojing Li
  • Jie Huang
  • Yifan Xu
  • Akesu Sujie
  • Haiying Zeng
  • Yunshi Zhong
  • Lijie Tan
  • Yingyong Hou
Original Article

Abstract

This study is to examine EGFR and c-Met variation in precancerous lesion, early esophageal squamous cell carcinoma (ESCC), and advanced ESCC and to explore their prognostic significance. EGFR and c-Met were detected by immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH). Of 158 endoscopy resection (ER) specimens, c-Met high expression and FISH positive were 44.9 and 12.6 %, respectively. EGFR high expression and FISH positive were 2.5 and 19.6 %, respectively. Of 84 surgical specimens, c-Met high expression and FISH positive were 50 and 8.3 %, respectively. EGFR high expression and FISH positive were 7.1 and 28.5 %, respectively. A significant correlation was observed between c-Met and EGFR FISH positive both in ER (P < 0.001) and surgical specimens (P = 0.029). Patients with EGFR high expression had poorer disease-free survival (DFS) and overall survival (OS) (P = 0.031 and P = 0.013) in c-Met high-expression group but not in c-Met low-expression group (P = 0.301 and P = 0.439). C-Met FISH positive did not represent a statistically significant adverse prognosis until 24 months later (P = 0.027 and 0.048). EGFR and c-Met might be involved in the tumorigenesis and development of ESCC. EGFR high expression has different prognostic significance in patients with differing c-Met expression status. C-Met FISH positive represent delayed prognostic factor.

Keywords

EGFR and c-Met Early and advanced ESCC Precancerous lesion Prognosis Potential interaction 

Notes

Acknowledgments

We gratefully acknowledge the support of the patients and their families who agreed to contribute to this research program. Our work was supported by Shanghai Municipal Commission of Health and Family Planning, key developing disciplines (No.2015ZB0201).

Compliance with ethical standards

The described experiments comply with the current laws of China.

Conflicts of interest

None

References

  1. 1.
    Arnold M, Soerjomataram I, Ferlay J, et al. Global incidence of oesophageal cancer by histological subtype in 2012. Gut. 2015;64:381–7.CrossRefPubMedGoogle Scholar
  2. 2.
    Pennathur A, Gibson MK, Jobe BA, et al. Oesophageal carcinoma. Lancet. 2013;381:400–12.CrossRefPubMedGoogle Scholar
  3. 3.
    Ahmed S, Sami A, Xiang J. HER2-directed therapy: current treatment options for HER2-positive breast cancer. Breast Cancer. 2015;22:101–16.CrossRefPubMedGoogle Scholar
  4. 4.
    Rossi A, Maione P, Sacco PC, et al. ALK inhibitors and advanced non-small cell lung cancer (review). Int J Oncol. 2014;45:499–508.PubMedGoogle Scholar
  5. 5.
    Gherardi E, Birchmeier W, Birchmeier C, et al. Targeting MET in cancer: rationale and progress. Nat Rev Cancer. 2012;12:89–103.CrossRefPubMedGoogle Scholar
  6. 6.
    Shi Y, Au JS, Thongprasert S, et al. A prospective, molecular epidemiology study of EGFR mutations in Asian patients with advanced non-small-cell lung cancer of adenocarcinoma histology (PIONEER). J Thorac Oncol. 2014;9:154–62.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Formica V, Roselli M. Targeted therapy in first line treatment of RAS wild type colorectal cancer. World J Gastroenterol. 2015;21:2871–4.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Kirstein MM, Lange A, Prenzler A, et al. Targeted therapies in metastatic colorectal cancer: a systematic review and assessment of currently available data. Oncologist. 2014;19:1156–68.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Takata A, Takiguchi S, Okada K, et al. Expression of insulin-like growth factor-II mRNA-binding protein-3 as a marker for predicting clinical outcome in patients with esophageal squamous cell carcinoma. Oncol Lett. 2014;8:2027–31.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Tang X, Fan Z, Wang Y, et al. Expression of klotho and beta-catenin in esophageal squamous cell carcinoma, and their clinicopathological and prognostic significance. Dis Esophagus. 2014. doi: 10.1111/dote.x.Google Scholar
  11. 11.
    Ni S, Zhu J, Zhang J, et al. Expression and clinical role of NF45 as a novel cell cycle protein in esophageal squamous cell carcinoma (ESCC). Tumour Biol. 2015;36:747–56.CrossRefPubMedGoogle Scholar
  12. 12.
    Gao YB, Chen ZL, Li JG, et al. Genetic landscape of esophageal squamous cell carcinoma. Nat Genet. 2014;46:1097–102.CrossRefPubMedGoogle Scholar
  13. 13.
    Song Y, Li L, Ou Y, et al. Identification of genomic alterations in oesophageal squamous cell cancer. Nature. 2014;509:91–5.CrossRefPubMedGoogle Scholar
  14. 14.
    Weaver JM, Ross-Innes CS, Shannon N, et al. Ordering of mutations in preinvasive disease stages of esophageal carcinogenesis. Nat Genet. 2014;46:837–43.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Cronin J, McAdam E, Danikas A, et al. Epidermal growth factor receptor (EGFR) is overexpressed in high-grade dysplasia and adenocarcinoma of the esophagus and may represent a biomarker of histological progression in Barrett’s esophagus (BE). Am J Gastroenterol. 2011;106:46–56.CrossRefPubMedGoogle Scholar
  16. 16.
    Miller CT, Moy JR, Lin L, et al. Gene amplification in esophageal adenocarcinomas and Barrett’s with high-grade dysplasia. Clin Cancer Res. 2003;9:4819–25.PubMedGoogle Scholar
  17. 17.
    Braut T, Krstulja M, Kujundzic M, et al. Epidermal growth factor receptor protein expression and gene amplification in normal, hyperplastic, and cancerous glottic tissue: immunohistochemical and fluorescent in situ hybridization study on tissue microarrays. Croat Med J. 2009;50:370–9.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Rygiel AM, Milano F, Ten KF, et al. Gains and amplifications of c-myc, EGFR, and 20.q13 loci in the no dysplasia-dysplasia-adenocarcinoma sequence of Barrett’s esophagus. Cancer Epidemiol Biomarkers Prev. 2008;17:1380–5.CrossRefPubMedGoogle Scholar
  19. 19.
    Paterson AL, O’Donovan M, Provenzano E, et al. Characterization of the timing and prevalence of receptor tyrosine kinase expression changes in oesophageal carcinogenesis. J Pathol. 2013;230:118–28.CrossRefPubMedGoogle Scholar
  20. 20.
    Gonzaga IM, Soares-Lima SC, de Santos PT, et al. Alterations in epidermal growth factor receptors 1 and 2 in esophageal squamous cell carcinomas. BMC Cancer. 2012;12:569.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Abedi-Ardekani B, Dar NA, Mir MM, et al. Epidermal growth factor receptor (EGFR) mutations and expression in squamous cell carcinoma of the esophagus in central Asia. BMC Cancer. 2012;12:602.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Hanawa M, Suzuki S, Dobashi Y, et al. EGFR protein overexpression and gene amplification in squamous cell carcinomas of the esophagus. Int J Cancer. 2006;118:1173–80.CrossRefPubMedGoogle Scholar
  23. 23.
    Dutton SJ, Ferry DR, Blazeby JM, et al. Gefitinib for oesophageal cancer progressing after chemotherapy (COG): a phase 3, multicentre, double-blind, placebo-controlled randomised trial. Lancet Oncol. 2014;15:894–904.CrossRefPubMedGoogle Scholar
  24. 24.
    Lockhart AC, Reed CE, Decker PA, et al. Phase II study of neoadjuvant therapy with docetaxel, cisplatin, panitumumab, and radiation therapy followed by surgery in patients with locally advanced adenocarcinoma of the distal esophagus (ACOSOG Z4051). Ann Oncol. 2014;25:1039–44.CrossRefPubMedGoogle Scholar
  25. 25.
    Ruhstaller T, Pless M, Dietrich D, et al. Cetuximab in combination with chemoradiotherapy before surgery in patients with resectable, locally advanced esophageal carcinoma: a prospective, multicenter phase IB/II Trial (SAKK 75/06). J Clin Oncol. 2011;29:626–31.CrossRefPubMedGoogle Scholar
  26. 26.
    Crosby T, Hurt CN, Falk S, et al. Chemoradiotherapy with or without cetuximab in patients with oesophageal cancer (SCOPE1): a multicentre, phase 2/3 randomised trial. Lancet Oncol. 2013;14:627–37.CrossRefPubMedGoogle Scholar
  27. 27.
    Karamouzis MV, Konstantinopoulos PA, Papavassiliou AG. Targeting MET as a strategy to overcome crosstalk-related resistance to EGFR inhibitors. Lancet Oncol. 2009;10:709–17.CrossRefPubMedGoogle Scholar
  28. 28.
    Bardelli A, Corso S, Bertotti A, et al. Amplification of the MET receptor drives resistance to anti-EGFR therapies in colorectal cancer. Cancer Discov. 2013;3:658–73.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Baschnagel AM, Williams L, Hanna A, et al. c-Met expression is a marker of poor prognosis in patients with locally advanced head and neck squamous cell carcinoma treated with chemoradiation. Int J Radiat Oncol Biol Phys. 2014;88:701–7.CrossRefPubMedGoogle Scholar
  30. 30.
    Huang L, An SJ, Chen ZH, et al. MET expression plays differing roles in non-small-cell lung cancer patients with or without EGFR mutation. J Thorac Oncol. 2014;9:725–8.CrossRefPubMedGoogle Scholar
  31. 31.
    Shi Y, He D, Hou Y, et al. An alternative high output tissue microarray technique. Diagn Pathol. 2013;8:9.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Li ZS, Li Q. The latest 2010 WHO classification of tumors of digestive system. Zhonghua Bing Li Xue Za Zhi. 2011;40:351–4.PubMedGoogle Scholar
  33. 33.
    Kwon MJ, Kim DH, Park HR, et al. Frequent hepatocyte growth factor overexpression and low frequency of c-Met gene amplification in human papillomavirus-negative tonsillar squamous cell carcinoma and their prognostic significances. Hum Pathol. 2014;45:1327–38.CrossRefPubMedGoogle Scholar
  34. 34.
    Cappuzzo F, Hirsch FR, Rossi E, et al. Epidermal growth factor receptor gene and protein and gefitinib sensitivity in non-small-cell lung cancer. J Natl Cancer Inst. 2005;97:643–55.CrossRefPubMedGoogle Scholar
  35. 35.
    Jiang D, Li X, Wang H, et al. The prognostic value of EGFR overexpression and amplification in esophageal squamous cell Carcinoma. BMC Cancer. 2015;15:377.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Rustgi AK, El-Serag HB. Esophageal carcinoma. N Engl J Med. 2014;371:2499–509.CrossRefPubMedGoogle Scholar
  37. 37.
    Kuwano H, Nishimura Y, Oyama T, et al. Guidelines for diagnosis and treatment of carcinoma of the esophagus April 2012 edited by the Japan Esophageal Society. Esophagus. 2015;12:1–30.CrossRefPubMedGoogle Scholar
  38. 38.
    Kato H, Arao T, Matsumoto K, et al. Gene amplification of EGFR, HER2, FGFR2 and MET in esophageal squamous cell carcinoma. Int J Oncol. 2013;42:1151–8.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Yang YL, Xu KL, Zhou Y, et al. Correlation of epidermal growth factor receptor overexpression with increased epidermal growth factor receptor gene copy number in esophageal squamous cell carcinomas. Chin Med J (Engl). 2012;125:450–4.Google Scholar
  40. 40.
    Xu Y, Peng Z, Li Z, et al. Expression and clinical significance of c-Met in advanced esophageal squamous cell carcinoma. BMC Cancer. 2015;15:6.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Sheridan C. Genentech to salvage anti-MET antibody with subgroup analysis. Nat Biotechnol. 2014;32:399–400.CrossRefPubMedGoogle Scholar
  42. 42.
    Kitagawa Y, Ueda M, Ando N, et al. Further evidence for prognostic significance of epidermal growth factor receptor gene amplification in patients with esophageal squamous cell carcinoma. Clin Cancer Res. 1996;2:909–14.PubMedGoogle Scholar
  43. 43.
    Yamamoto Y, Yamai H, Seike J, et al. Prognosis of esophageal squamous cell carcinoma in patients positive for human epidermal growth factor receptor family can be improved by initial chemotherapy with docetaxel, fluorouracil, and cisplatin. Ann Surg Oncol. 2012;19:757–65.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  • Haixing Wang
    • 1
  • Dongxian Jiang
    • 1
  • Qi Song
    • 1
  • Chen Xu
    • 1
  • Yuan Shi
    • 1
  • Xiaojing Li
    • 1
  • Jie Huang
    • 1
  • Yifan Xu
    • 1
  • Akesu Sujie
    • 1
  • Haiying Zeng
    • 1
  • Yunshi Zhong
    • 2
  • Lijie Tan
    • 3
  • Yingyong Hou
    • 1
  1. 1.Department of PathologyZhongshan Hospital, Fudan UniversityShanghaiPeople’s Republic of China
  2. 2.Endoscopic CenterZhongshan Hospital, Fudan UniversityShanghaiPeople’s Republic of China
  3. 3.Department of Thoracic SurgeryZhongshan Hospital, Fudan UniversityShanghaiPeople’s Republic of China

Personalised recommendations