Tumor Biology

, Volume 37, Issue 2, pp 1559–1565 | Cite as

Perspective: Cooperation of Nanog, NF-κΒ, and CXCR4 in a regulatory network for directed migration of cancer stem cells

  • Masoumeh Es-haghi
  • Sara Soltanian
  • Hesam Dehghani
Review

Abstract

Directed cell migration is a crucial mobility phase of cancer stem cells having stemness and tumorigenic characteristics. It is known that CXCR4 plays key roles in the perception of chemotactic gradients throughout the directed migration of CSCs. There are a number of complex signaling pathways and transcription factors that coordinate with CXCR4/CXCL12 axis during directed migration. In this review, we focus on some transcription factors such as Nanog, NF-κB, and Bmi-1 that cooperate with CXCR4/CXCL12 for the maintenance of stemness and induction of metastasis behavior in cancer stem cells.

Keywords

Cancer stem cell CXCR4/CXCL12 axis Nanog NF-κB Directed cell migration Metastasis Stemness 

Notes

Acknowledgments

The research work in the laboratory of H.D. is supported by grant number 3/25064 from Ferdowsi University of Mashhad, Mashhad, Iran, and grant number 100311 from Council for Stem Cell Sciences and Technologies of Iran and the Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.

Compliance with ethical standards

Conflicts of interest

None

References

  1. 1.
    Valent P, Bonnet D, De Maria R, Lapidot T, Copland M, Melo JV, et al. Cancer stem cell definitions and terminology: the devil is in the details. Nat Rev Cancer. 2012;12(11):767–75.CrossRefPubMedGoogle Scholar
  2. 2.
    Meacham CE, Morrison SJ. Tumour heterogeneity and cancer cell plasticity. Nature. 2013;501(7467):328–37.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Flemming A. Cancer stem cells: targeting the root of cancer relapse. Nat Rev Drug Discov. 2015;14(3):165.CrossRefPubMedGoogle Scholar
  4. 4.
    Soltanian S, Matin MM. Cancer stem cells and cancer therapy. Tumour Biol: J Int Soc Oncodevelopmental Biol Med. 2011;32(3):425–40.CrossRefGoogle Scholar
  5. 5.
    Wong DJ, Liu H, Ridky TW, Cassarino D, Segal E, Chang HY. Module map of stem cell genes guides creation of epithelial cancer stem cells. Cell Stem Cell. 2008;2(4):333–44.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Li Y, Rogoff HA, Keates S, Gao Y, Murikipudi S, Mikule K, et al. Suppression of cancer relapse and metastasis by inhibiting cancer stemness. Proc Natl Acad Sci. 2015;112(6):1839–44.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Kreso A, Dick JE. Evolution of the cancer stem cell model. Cell Stem Cell. 2014;14(3):275–91.CrossRefPubMedGoogle Scholar
  8. 8.
    Brabletz T, Jung A, Spaderna S, Hlubek F, Kirchner T. Opinion: migrating cancer stem cells—an integrated concept of malignant tumour progression. Nat Rev Cancer. 2005;5(9):744–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Malanchi I, Santamaria-Martinez A, Susanto E, Peng H, Lehr HA, Delaloye JF, et al. Interactions between cancer stem cells and their niche govern metastatic colonization. Nature. 2012;481(7379):85–9.CrossRefGoogle Scholar
  10. 10.
    Yilmaz M, Christofori G. EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev. 2009;28(1–2):15–33.CrossRefPubMedGoogle Scholar
  11. 11.
    Valastyan S, Weinberg RA. Tumor metastasis: molecular insights and evolving paradigms. Cell. 2011;147(2):275–92.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Schulenburg A, Blatt K, Cerny-Reiterer S, Sadovnik I, Herrmann H, Marian B, et al. Cancer stem cells in basic science and in translational oncology: can we translate into clinical application? J Hematol Oncol. 2015;8(1):16.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Lopez-Lazaro M. The migration ability of stem cells can explain the existence of cancer of unknown primary site. Rethinking metastasis. Oncoscience. 2015;2(5):467–75.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Case LB, Waterman CM. Integration of actin dynamics and cell adhesion by a three-dimensional, mechanosensitive molecular clutch. Nat Cell Biol. 2015;17(8):955–63.Google Scholar
  15. 15.
    Liao WT, Ye YP, Deng YJ, Bian XW, Ding YQ. Metastatic cancer stem cells: from the concept to therapeutics. Am J Stem Cells. 2014;3(2):46–62.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Bravo-Cordero JJ, Hodgson L, Condeelis J. Directed cell invasion and migration during metastasis. Curr Opin Cell Biol. 2012;24(2):277–83.CrossRefPubMedGoogle Scholar
  17. 17.
    Kitamura T, Qian B-Z, Pollard JW. Immune cell promotion of metastasis. Nat Rev Immunol. 2015;15(2):73–86.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Smith HA, Kang Y. The metastasis-promoting roles of tumor-associated immune cells. J Mol Med (Berlin, Germany). 2013;91(4):411–29.CrossRefGoogle Scholar
  19. 19.
    Patel P, Chen EI. Cancer stem cells, tumor dormancy, and metastasis. Front Endocrinol. 2012;3:125.CrossRefGoogle Scholar
  20. 20.
    Albini A, Bruno A, Gallo C, Pajardi G, Noonan DM, Dallaglio K. Cancer stem cells and the tumor microenvironment: interplay in tumor heterogeneity. Connect Tissue Res. 2015;56(5):414–25.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Parent CA, Weiner OD. The symphony of cell movement: how cells orchestrate diverse signals and forces to control migration. Curr Opin Cell Biol. 2013;25(5):523–5.CrossRefPubMedGoogle Scholar
  22. 22.
    Swaney KF, Huang CH, Devreotes PN. Eukaryotic chemotaxis: a network of signaling pathways controls motility, directional sensing, and polarity. Annu Rev Biophys. 2010;39:265–89.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Murdoch C. CXCR4: chemokine receptor extraordinaire. Immunol Rev. 2000;177:175–84.CrossRefPubMedGoogle Scholar
  24. 24.
    Chatterjee S, Behnam Azad B, Nimmagadda S. The intricate role of CXCR4 in cancer. Adv Cancer Res. 2014;124:31–82.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Balkwill F. The significance of cancer cell expression of the chemokine receptor CXCR4. Semin Cancer Biol. 2004;14(3):171–9.CrossRefPubMedGoogle Scholar
  26. 26.
    Zlotnik A. Chemokines and cancer. Int J Cancer J Int Cancer. 2006;119(9):2026–9.CrossRefGoogle Scholar
  27. 27.
    Haviv YS, van Houdt WJ, Lu B, Curiel DT, Zhu ZB. Transcriptional targeting in renal cancer cell lines via the human CXCR4 promoter. Mol Cancer Ther. 2004;3(6):687–91.PubMedGoogle Scholar
  28. 28.
    Kucia M, Reca R, Miekus K, Wanzeck J, Wojakowski W, Janowska-Wieczorek A, et al. Trafficking of normal stem cells and metastasis of cancer stem cells involve similar mechanisms: pivotal role of the SDF-1-CXCR4 axis. Stem Cells (Dayton, Ohio). 2005;23(7):879–94.CrossRefGoogle Scholar
  29. 29.
    Jung MJ, Rho JK, Kim YM, Jung JE, Jin YB, Ko YG, et al. Upregulation of CXCR4 is functionally crucial for maintenance of stemness in drug-resistant non-small cell lung cancer cells. Oncogene. 2013;32(2):209–21.CrossRefPubMedGoogle Scholar
  30. 30.
    Gao Y, Li C, Nie M, Lu Y, Lin S, Yuan P, et al. CXCR4 as a novel predictive biomarker for metastasis and poor prognosis in colorectal cancer. Tumor Biol. 2014;35(5):4171–5.CrossRefGoogle Scholar
  31. 31.
    Gagliardi F, Narayanan A, Reni M, Franzin A, Mazza E, Boari N, et al. The role of CXCR4 in highly malignant human gliomas biology: current knowledge and future directions. Glia. 2014;62(7):1015–23.CrossRefPubMedGoogle Scholar
  32. 32.
    Fareh M, Turchi L, Virolle V, Debruyne D, Almairac F. The miR 302–367 cluster drastically affects self-renewal and infiltration properties of glioma-initiating cells through CXCR4 repression and consequent disruption of the SHH-GLI-NANOG network. Cell Death Differ. 2012;19(2):232–44.CrossRefPubMedGoogle Scholar
  33. 33.
    Kioi M, Vogel H, Schultz G, Hoffman RM, Harsh GR, Brown JM. Inhibition of vasculogenesis, but not angiogenesis, prevents the recurrence of glioblastoma after irradiation in mice. J Clin Invest. 2010;120(3):694–705.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Kim EK, Yun SJ, Ha JM, Kim YW, Jin IH, Woo DH, et al. Synergistic induction of cancer cell migration regulated by G[beta][gamma] and phosphatidylinositol 3-kinase. Exp Mol Med. 2012;44:483–91.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Kim BJ, Hannanta-anan P, Chau M, Kim YS, Swartz MA, Wu M. Cooperative roles of SDF-1alpha and EGF gradients on tumor cell migration revealed by a robust 3D microfluidic model. PLoS ONE. 2013;8(7), e68422.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Akekawatchai C, Holland JD, Kochetkova M, Wallace JC, McColl SR. Transactivation of CXCR4 by the insulin-like growth factor-1 receptor (IGF-1R) in human MDA-MB-231 breast cancer epithelial cells. J Biol Chem. 2005;280(48):39701–8.CrossRefPubMedGoogle Scholar
  37. 37.
    Mimeault M, Batra SK. Frequent deregulations in the hedgehog signaling network and cross-talks with the epidermal growth factor receptor pathway involved in cancer progression and targeted therapies. Pharmacol Rev. 2010;62(3):497–524.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Wu F, Yang LY, Li YF, Ou DP, Chen DP, Fan C. Novel role for epidermal growth factor-like domain 7 in metastasis of human hepatocellular carcinoma. Hepatol (Baltimore, Md). 2009;50(6):1839–50.CrossRefGoogle Scholar
  39. 39.
    Delfortrie S, Pinte S, Mattot V, Samson C, Villain G, Caetano B, et al. Egfl7 promotes tumor escape from immunity by repressing endothelial cell activation. Cancer Res. 2011;71(23):7176–86.CrossRefPubMedGoogle Scholar
  40. 40.
    Bai R, Zhao H, Zhang X, Du S. Characterization of sonic hedgehog inhibition in gastric carcinoma cells. Oncol Lett. 2014;7(5):1381–4.PubMedPubMedCentralGoogle Scholar
  41. 41.
    McLennan R, Dyson L, Prather KW, Morrison JA, Baker RE, Maini PK, et al. Multiscale mechanisms of cell migration during development: theory and experiment. Dev (Cambridge, England). 2012;139(16):2935–44.CrossRefGoogle Scholar
  42. 42.
    Lo KH, Hui MN, Yu RM, Wu RS, Cheng SH. Hypoxia impairs primordial germ cell migration in zebrafish (Danio rerio) embryos. PLoS ONE. 2011;6(9), e24540.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Schlueter PJ, Sang X, Duan C, Wood AW. Insulin-like growth factor receptor 1b is required for zebrafish primordial germ cell migration and survival. Dev Biol. 2007;305(1):377–87.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Haider H, Jiang S, Idris NM, Ashraf M. IGF-1-overexpressing mesenchymal stem cells accelerate bone marrow stem cell mobilization via paracrine activation of SDF-1alpha/CXCR4 signaling to promote myocardial repair. Circ Res. 2008;103(11):1300–8.CrossRefPubMedGoogle Scholar
  45. 45.
    Huang CE, Yu CC, Hu FW, Chou MY, Tsai LL. Enhanced chemosensitivity by targeting Nanog in head and neck squamous cell carcinomas. Int J Mol Sci. 2014;15(9):14935–48.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Ji W, Jiang Z. Effect of shRNA-mediated inhibition of Nanog gene expression on the behavior of human gastric cancer cells. Oncol Letters. 2013;6(2):367–74.Google Scholar
  47. 47.
    Borrull A, Ghislin S, Deshayes F, Lauriol J, Alcaide-Loridan C, Middendorp S. Nanog and Oct4 overexpression increases motility and transmigration of melanoma cells. J Cancer Res Clin Oncol. 2012;138(7):1145–54.CrossRefPubMedGoogle Scholar
  48. 48.
    Siu MK, Wong ES, Kong DS, Chan HY, Jiang L, Wong OG, et al. Stem cell transcription factor NANOG controls cell migration and invasion via dysregulation of E-cadherin and FoxJ1 and contributes to adverse clinical outcome in ovarian cancers. Oncogene. 2013;32(30):3500–9.CrossRefPubMedGoogle Scholar
  49. 49.
    Dang H, Ding W, Emerson D, Rountree CB. Snail1 induces epithelial-to-mesenchymal transition and tumor initiating stem cell characteristics. BMC Cancer. 2011;11:396.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Palla AR, Piazzolla D, Alcazar N, Canamero M, Grana O, Gomez-Lopez G, et al. The pluripotency factor NANOG promotes the formation of squamous cell carcinomas. Scientific Rep. 2015;5:10205.CrossRefGoogle Scholar
  51. 51.
    Wang ML, Chiou SH, Wu CW. Targeting cancer stem cells: emerging role of Nanog transcription factor. OncoTargets Ther. 2013;6:1207–20.Google Scholar
  52. 52.
    Zbinden M, Duquet A, Lorente-Trigos A, Ngwabyt SN, Borges I, Ruiz i Altaba A. NANOG regulates glioma stem cells and is essential in vivo acting in a cross-functional network with GLI1 and p53. EMBO J. 2010;29(15):2659–74.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Carpenter RL, Lo HW. Hedgehog pathway and GLI1 isoforms in human cancer. Discov Med. 2012;13(69):105–13.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Li X, Ma Q, Xu Q, Liu H, Lei J, Duan W, et al. SDF-1/CXCR4 signaling induces pancreatic cancer cell invasion and epithelial-mesenchymal transition in vitro through non-canonical activation of hedgehog pathway. Cancer Lett. 2012;322(2):169–76.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Brandner S. Nanog, Gli, and p53: a new network of stemness in development and cancer. EMBO J. 2010;29(15):2475–6.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Feldmann G, Dhara S, Fendrich V, Bedja D, Beaty R, Mullendore M, et al. Blockade of hedgehog signaling inhibits pancreatic cancer invasion and metastases: a new paradigm for combination therapy in solid cancers. Cancer Res. 2007;67(5):2187–96.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Sanchez-Sanchez AV, Camp E, Leal-Tassias A, Atkinson SP, Armstrong L, Diaz-Llopis M, et al. Nanog regulates primordial germ cell migration through Cxcr4b. Stem Cells (Dayton, Ohio). 2010;28(9):1457–64.CrossRefGoogle Scholar
  58. 58.
    Chambers I, Silva J, Colby D, Nichols J, Nijmeijer B, Robertson M, et al. Nanog safeguards pluripotency and mediates germline development. Nature. 2007;450(7173):1230–4.CrossRefPubMedGoogle Scholar
  59. 59.
    Blaser H, Eisenbeiss S, Neumann M, Reichman-Fried M, Thisse B, Thisse C, et al. Transition from non-motile behaviour to directed migration during early PGC development in zebrafish. J Cell Sci. 2005;118(Pt 17):4027–38.CrossRefPubMedGoogle Scholar
  60. 60.
    Lee CC, Lai JH, Hueng DY, Ma HI, Chung Y, Sun YY, et al. Disrupting the CXCL12/CXCR4 axis disturbs the characteristics of glioblastoma stem-like cells of rat RG2 glioblastoma. Cancer Cell Int. 2013;13(1):85.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Singh AP, Arora S, Bhardwaj A, Srivastava SK, Kadakia MP, Wang B, et al. CXCL12/CXCR4 protein signaling axis induces sonic hedgehog expression in pancreatic cancer cells via extracellular regulated kinase- and Akt kinase-mediated activation of nuclear factor kappaB: implications for bidirectional tumor-stromal interactions. J Biol Chem. 2012;287(46):39115–24.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Liu M, Sakamaki T, Casimiro MC, Willmarth NE, Quong AA, Ju X, et al. The canonical NF-kappaB pathway governs mammary tumorigenesis in transgenic mice and tumor stem cell expansion. Cancer Res. 2010;70(24):10464–73.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Helbig G, Christopherson 2nd KW, Bhat-Nakshatri P, Kumar S, Kishimoto H, Miller KD, et al. NF-kappaB promotes breast cancer cell migration and metastasis by inducing the expression of the chemokine receptor CXCR4. J Biol Chem. 2003;278(24):21631–8.CrossRefPubMedGoogle Scholar
  64. 64.
    Zhi Y, Lu H, Duan Y, Sun W, Guan G, Dong Q, et al. Involvement of the nuclear factor-kappaB signaling pathway in the regulation of CXC chemokine receptor-4 expression in neuroblastoma cells induced by tumor necrosis factor-alpha. Int J Mol Med. 2015;35(2):349–57.PubMedGoogle Scholar
  65. 65.
    Zhi Y, Duan Y, Zhou X, Yin X, Guan G, Zhang H, et al. NF-kappaB signaling pathway confers neuroblastoma cells migration and invasion ability via the regulation of CXCR4. Med Sci Monit : Int Med J Exp Clin Res. 2014;20:2746–52.CrossRefGoogle Scholar
  66. 66.
    Po A, Ferretti E, Miele E, De Smaele E, Paganelli A, Canettieri G, et al. Hedgehog controls neural stem cells through p53-independent regulation of Nanog. EMBO J. 2010;29(15):2646–58.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Cochrane CR, Szczepny A, Watkins DN, Cain JE. Hedgehog signaling in the maintenance of cancer stem cells. Cancers. 2015;7(3):1554–85.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Xia P, Xu XY. PI3K/Akt/mTOR signaling pathway in cancer stem cells: from basic research to clinical application. Am J Cancer Res. 2015;5(5):1602–9.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Martelli AM, Evangelisti C, Follo MY, Ramazzotti G, Fini M, Giardino R, et al. Targeting the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin signaling network in cancer stem cells. Curr Med Chem. 2011;18(18):2715–26.CrossRefPubMedGoogle Scholar
  70. 70.
    Weng W, Zhang X, Xu K, Zheng T, Goel A. Long non-coding RNA Hotair, enhances Sdf1a-CXCR4-induced migration and invasion in esophageal squamous cell carcinoma. Gastroenterology. 2015;148(4):S-560-S-1.CrossRefGoogle Scholar
  71. 71.
    Song LB, Li J, Liao WT, Feng Y, Yu CP, Hu LJ, et al. The polycomb group protein Bmi-1 represses the tumor suppressor PTEN and induces epithelial-mesenchymal transition in human nasopharyngeal epithelial cells. J Clin Invest. 2009;119(12):3626–36.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Paranjape AN, Balaji SA, Mandal T, Krushik EV, Nagaraj P, Mukherjee G, et al. Bmi1 regulates self-renewal and epithelial to mesenchymal transition in breast cancer cells through Nanog. BMC Cancer. 2014;14:785.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Liu S, Dontu G, Mantle ID, Patel S, Ahn NS, Jackson KW, et al. Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res. 2006;66(12):6063–71.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Liang J, Wang P, Xie S, Wang W, Zhou X, Hu J, et al. Bmi-1 regulates the migration and invasion of glioma cells through p16. Cell Biol Int. 2015;39(3):283–90.Google Scholar
  75. 75.
    Jiang L, Wu J, Yang Y, Liu L, Song L, Li J, et al. Bmi-1 promotes the aggressiveness of glioma via activating the NF-kappaB/MMP-9 signaling pathway. BMC Cancer. 2012;12:406.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Li D, Feng J, Wu T, Wang Y, Sun Y, Ren J, et al. Long intergenic noncoding RNA HOTAIR is overexpressed and regulates PTEN methylation in laryngeal squamous cell carcinoma. Am J Pathol. 2013;182(1):64–70.CrossRefPubMedGoogle Scholar
  77. 77.
    Zhou X, Chen J, Tang W. The molecular mechanism of HOTAIR in tumorigenesis, metastasis, and drug resistance. Acta Biochim Biophys Sin. 2014;46(12):1011–5.CrossRefPubMedGoogle Scholar
  78. 78.
    Zhu M, Guo J, Xia H, Li W, Lu Y, Dong X, et al. Alpha-fetoprotein activates AKT/mTOR signaling to promote CXCR4 expression and migration of hepatoma cells. Oncoscience. 2015;2(1):59–70.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Yi T, Zhai B, Yu Y, Kiyotsugu Y, Raschle T, Etzkorn M, et al. Quantitative phosphoproteomic analysis reveals system-wide signaling pathways downstream of SDF-1/CXCR4 in breast cancer stem cells. Proc Natl Acad Sci. 2014;111(21):E2182–90.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Aziz MH, Hafeez BB, Sand JM, Pierce DB, Aziz SW, Dreckschmidt NE, et al. Protein kinase Cvarepsilon mediates Stat3Ser727 phosphorylation, Stat3-regulated gene expression, and cell invasion in various human cancer cell lines through integration with MAPK cascade (RAF-1, MEK1/2, and ERK1/2). Oncogene. 2010;29(21):3100–9.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Cho KH, Jeong KJ, Shin SC, Kang J, Park CG, Lee HY. STAT3 mediates TGF-beta1-induced TWIST1 expression and prostate cancer invasion. Cancer Lett. 2013;336(1):167–73.CrossRefPubMedGoogle Scholar
  82. 82.
    Jain K, Basu A. Protein kinase C-epsilon promotes EMT in breast cancer. Breast Cancer: Basic Clin Res. 2014;8:61–7.Google Scholar
  83. 83.
    Martin GS. Cell signaling and cancer. Cancer Cell. 2003;4(3):167–74.CrossRefPubMedGoogle Scholar
  84. 84.
    Ivaska J, Kermorgant S, Whelan R, Parsons M, Ng T, Parker PJ. Integrin-protein kinase C relationships. Biochem Soc Trans. 2003;31(Pt 1):90–3.CrossRefPubMedGoogle Scholar
  85. 85.
    Sulzmaier FJ, Jean C, Schlaepfer DD. FAK in cancer: mechanistic findings and clinical applications. Nat Rev Cancer. 2014;14(9):598–610.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    He H, Zhao ZH, Han FS, Wang XF, Zeng YJ. Activation of protein kinase C epsilon enhanced movement ability and paracrine function of rat bone marrow mesenchymal stem cells partly at least independent of SDF-1/CXCR4 axis and PI3K/AKT pathway. Int J Clin Exp Med. 2015;8(1):188–202.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Xie X, Piao L, Cavey GS, Old M, Teknos TN, Mapp AK, et al. Phosphorylation of Nanog is essential to regulate Bmi1 and promote tumorigenesis. Oncogene. 2014;33(16):2040–52.CrossRefPubMedGoogle Scholar
  88. 88.
    Ho B, Olson G, Figel S, Gelman I, Cance WG, Golubovskaya VM. Nanog increases focal adhesion kinase (FAK) promoter activity and expression and directly binds to FAK protein to be phosphorylated. J Biol Chem. 2012;287(22):18656–73.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Golubovskaya VM. FAK and Nanog cross talk with p53 in cancer stem cells. Anti Cancer Agents Med Chem. 2013;13(4):576–80.CrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Masoumeh Es-haghi
    • 1
  • Sara Soltanian
    • 2
  • Hesam Dehghani
    • 1
    • 3
  1. 1.Division of Biotechnology, Faculty of Veterinary MedicineFerdowsi University of MashhadMashhadIran
  2. 2.Department of Biology, Faculty of ScienceShahid Bahonar University of KermanKermanIran
  3. 3.Embryonic and Stem Cell Biology and Biotechnology Research Group, Institute of BiotechnologyFerdowsi University of MashhadMashhadIran

Personalised recommendations