Tumor Biology

, Volume 37, Issue 7, pp 9625–9633 | Cite as

Targeting non-canonical autophagy overcomes erlotinib resistance in tongue cancer

Original Article


Acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) frequently occurs in many human cancers and hampers their therapeutic use. A large body of evidence has demonstrated the pro-survival role of autophagy in many human cancers. However, whether autophagy is involved in the induction of erlotinib resistance in tongue squamous cell carcinoma (TSCC) remains unknown. In this report, we found that autophagy prior to or induced by erlotinib treatment plays an important role in erlotinib resistance in tongue cancer cells. Using LC3 transfection, we observed that autophagy is upregulated and further induced when treated with erlotinib. Moreover, we found that autophagy plays a cytoprotective role by MTT analysis of the cell viability in TSCCs when treated with rapamycin or hydroxychloroquine (HCQ) in combination with erlotinib. However, 3-methyladenine (3-MA) did not influence the autophagy. Then, through siRNA technology and WB, we found that erlotinib-induced autophagy is mediated by ATG5 but not Beclin1. Also, knockdown of ATG5 significantly decreased the erlotinib resistance and knockdown of Beclin1 did not affect the sensitivity to erlotinib in TSCCs. Taken together, this indicates the critical role of non-canonical autophagy in erlotinib resistance in TSCCs.


Autophagy Chemotherapeutic resistance Erlotinib ATG5 


Compliance with Ethical Standards

Conflicts of interest



  1. 1.
    Zhang S, Feng XL, Shi L, Gong CJ, He ZJ, Wu HJ, et al. Genome-wide analysis of DNA methylation in tongue squamous cell carcinoma. Oncol Rep. 2013;29(5):1819–26.PubMedGoogle Scholar
  2. 2.
    Feaver GP. Oral cancer in the UK: to screen or not to screen. Oral Oncol. 1999;35(4):450.CrossRefPubMedGoogle Scholar
  3. 3.
    Atula S, Grenman R, Laippala P, Syrjanen S. Cancer of the tongue in patients younger than 40 years. A distinct entity? Arch Otolaryngol Head Neck Surgery. 1996;122(12):1313–9.CrossRefGoogle Scholar
  4. 4.
    Haddad RI, Shin DM. Recent advances in head and neck cancer. N Engl J Med. 2008;359(11):1143–54.CrossRefPubMedGoogle Scholar
  5. 5.
    Metzger B, Chambeau L, Begon DY, Faber C, Kayser J, Berchem G, et al. The human epidermal growth factor receptor (EGFR) gene in European patients with advanced colorectal cancer harbors infrequent mutations in its tyrosine kinase domain. BMC Med Genet. 2011;12:144.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Chen G, Kronenberger P, Teugels E, Umelo IA, De Greve J. Targeting the epidermal growth factor receptor in non-small cell lung cancer cells: the effect of combining RNA interference with tyrosine kinase inhibitors or cetuximab. BMC Med. 2012;10:28.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Lindeman N. Keynote lecture: KN01 EGFR and beyond: evolution of molecular classification of lung cancer. Pathology. 2014;46 Suppl 2:S1.CrossRefGoogle Scholar
  8. 8.
    Caiazza F, Elliott L, Fennelly D, Sheahan K, Doherty GA, Ryan EJ. Targeting EGFR in metastatic colorectal cancer beyond the limitations of KRAS status: alternative biomarkers and therapeutic strategies. Biomark Med. 2015;9(4):363–75.CrossRefPubMedGoogle Scholar
  9. 9.
    Mlcochova J, Faltejskova P, Nemecek R, Svoboda M, Slaby O. MicroRNAs targeting EGFR signalling pathway in colorectal cancer. J Cancer Res Clin Oncol. 2013;139(10):1615–24.CrossRefPubMedGoogle Scholar
  10. 10.
    Messersmith WA, Ahnen DJ. Targeting EGFR in colorectal cancer. N Engl J Med. 2008;359(17):1834–6.CrossRefPubMedGoogle Scholar
  11. 11.
    Burtness B, Bauman JE, Galloway T. Novel targets in HPV-negative head and neck cancer: overcoming resistance to EGFR inhibition. Lancet Oncol. 2013;14(8):e302–309.CrossRefPubMedGoogle Scholar
  12. 12.
    Tan DS, Wang W, Leong HS, Sew PH, Lau DP, Chong FT, et al. Tongue carcinoma infrequently harbor common actionable genetic alterations. BMC Cancer. 2014;14:679.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Mueller KL, Powell K, Madden JM, Eblen ST, Boerner JL. EGFR tyrosine 845 phosphorylation-dependent proliferation and transformation of breast cancer cells require activation of p38 MAPK. Transl Oncol. 2012;5(5):327–34.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Larsen AK, Ouaret D, El Ouadrani K, Petitprez A. Targeting EGFR and VEGF(R) pathway cross-talk in tumor survival and angiogenesis. Pharmacol Ther. 2011;131(1):80–90.CrossRefPubMedGoogle Scholar
  15. 15.
    Lindzen M, Carvalho S, Starr A, Ben-Chetrit N, Pradeep CR, Kostler WJ, et al. A recombinant decoy comprising EGFR and ErbB-4 inhibits tumor growth and metastasis. Oncogene. 2012;31(30):3505–15.CrossRefPubMedGoogle Scholar
  16. 16.
    Donev IS, Wang W, Yamada T, Li Q, Takeuchi S, Matsumoto K, et al. Transient PI3K inhibition induces apoptosis and overcomes HGF-mediated resistance to EGFR-TKIs in EGFR mutant lung cancer. Clin Cancer Res: Off J Am Assoc Cancer Res. 2011;17(8):2260–9.CrossRefGoogle Scholar
  17. 17.
    Sequist LV, Martins RG, Spigel D, Grunberg SM, Spira A, Janne PA, et al. First-line gefitinib in patients with advanced non-small-cell lung cancer harboring somatic EGFR mutations. J Clin Oncol: Off J Am Soc Clin Oncol. 2008;26(15):2442–9.CrossRefGoogle Scholar
  18. 18.
    Ciardiello F, Caputo R, Bianco R, Damiano V, Fontanini G, Cuccato S, et al. Inhibition of growth factor production and angiogenesis in human cancer cells by ZD1839 (Iressa), a selective epidermal growth factor receptor tyrosine kinase inhibitor. Clin Cancer Res: Off J Am Assoc Cancer Res. 2001;7(5):1459–65.Google Scholar
  19. 19.
    Cappuzzo F, Varella-Garcia M, Shigematsu H, Domenichini I, Bartolini S, Ceresoli GL, et al. Increased HER2 gene copy number is associated with response to gefitinib therapy in epidermal growth factor receptor-positive non-small-cell lung cancer patients. J Clin Oncol: Off J Am Soc Clin Oncol. 2005;23(22):5007–18.CrossRefGoogle Scholar
  20. 20.
    Ishiguro Y, Ishiguro H, Miyamoto H. Epidermal growth factor receptor tyrosine kinase inhibition up-regulates interleukin-6 in cancer cells and induces subsequent development of interstitial pneumonia. Oncotarget. 2013;4(4):550–9.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Gusenbauer S, Vlaicu P, Ullrich A. HGF induces novel EGFR functions involved in resistance formation to tyrosine kinase inhibitors. Oncogene. 2013;32(33):3846–56.CrossRefPubMedGoogle Scholar
  22. 22.
    Wang RC, Wei Y, An Z, Zou Z, Xiao G, Bhagat G, et al. Akt-mediated regulation of autophagy and tumorigenesis through Beclin 1 phosphorylation. Science. 2012;338(6109):956–9.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Martin TD, Chen XW, Kaplan RE, Saltiel AR, Walker CL, Reiner DJ, et al. Ral and Rheb GTPase activating proteins integrate mTOR and GTPase signaling in aging, autophagy, and tumor cell invasion. Mol Cell. 2014;53(2):209–20.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Lu Z, Luo RZ, Lu Y, Zhang X, Yu Q, Khare S, et al. The tumor suppressor gene ARHI regulates autophagy and tumor dormancy in human ovarian cancer cells. J Clin Invest. 2008;118(12):3917–29.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Tsai J, Lee JT, Wang W, Zhang J, Cho H, Mamo S, et al. Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity. Proc Natl Acad Sci U S A. 2008;105(8):3041–6.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Liu C, Lou W, Zhu Y, Nadiminty N, Schwartz CT, Evans CP, et al. Niclosamide inhibits androgen receptor variants expression and overcomes enzalutamide resistance in castration-resistant prostate cancer. Clin Cancer Res: Off J Am Assoc Cancer Res. 2014;20(12):3198–210.CrossRefGoogle Scholar
  27. 27.
    Nguyen HG, Yang JC, Kung HJ, Shi XB, Tilki D, Lara Jr PN, et al. Targeting autophagy overcomes Enzalutamide resistance in castration-resistant prostate cancer cells and improves therapeutic response in a xenograft model. Oncogene. 2014;33(36):4521–30.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Shien K, Yamamoto H, Soh J, Miyoshi S, Toyooka S. Drug resistance to EGFR tyrosine kinase inhibitors for non-small cell lung cancer. Acta Med Okayama. 2014;68(4):191–200.PubMedGoogle Scholar
  29. 29.
    Yoshida T, Zhang G, Smith MA, Lopez AS, Bai Y, Li J, et al. Tyrosine phosphoproteomics identifies both codrivers and cotargeting strategies for T790M-related EGFR-TKI resistance in non-small cell lung cancer. Clin Cancer Res: Off J Am Assoc Cancer Res. 2014;20(15):4059–74.CrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  1. 1.School of StomatologyLiaoning Medical UniversityJinzhouPeople’s Republic of China
  2. 2.School of Stomatology Shandong University, Shandong Provincial Key Laboratory of Oral Tissue RegenerationShandong UniversityJinanChina

Personalised recommendations