Skip to main content

Advertisement

Log in

The tumor suppressive role of RASSF1A in osteosarcoma through the Wnt signaling pathway

  • Original Article
  • Published:
Tumor Biology

Abstract

Ras-association domain family 1 isoform A (RASSF1A) is a tumor suppressor gene and its expression is lost in numerous types of cancer cells, including primary osteosarcoma cells. However, its functional significance in osteosarcoma has not been well defined. The messenger RNA (mRNA) expression of RASSF1A in osteosarcoma tissues and corresponding non-tumoral tissues was measured by real-time PCR. Overexpression of RASSF1A was established by an adenoviral vector expressing RASSF1A. Cell migration and invasion were analyzed in transwells. Apoptosis and cell cycle were analyzed using flow cytometry. Wnt/β-catenin activity was measured by TCF reporter dual-luciferase assay. Cell viability was measured by MTT assay. Protein expression was detected by Western blot. RASSF1A mRNA expression was significantly lower in osteosarcoma tissues than that in the corresponding non-tumoral tissues. The lowered RASSF1A expression correlated with the clinical severity of osteosarcoma. rAd-RASSF1A injection significantly inhibited the growth of xenograft MNNG/HOS tumors in mice. Overexpression of RASSF1A resulted in significant inhibition of the proliferation, migration, and invasion; induced apoptosis; and arrested cell cycle at G0/G1 phase in both the MNNG/HOS and SaOS2 cells. Overexpression of RASSF1A inhibited the Wnt/β-catenin activity, decreased phosphorylation of Akt/glycogen synthase kinase-3-β (GSK3-β), and increased phosphorylation of mammalian sterile 20-like kinase 1 (MST1). Overexpression of RASSF1A downregulated the cyclin D1, c-Myc, and matrix metalloproteinase-7 (MMP-7) protein levels. RASSF1A functions as a tumor suppressor in osteosarcoma and exerts anti-cancer roles through regulating Akt/GSK-3-Wnt/β-catenin signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bruland OS, Hoifodt H, Saeter G, Smeland S, Fodstad O. Hematogenous micrometastases in osteosarcoma patients. Clin Cancer Res. 2005;11:4666–73.

    Article  CAS  PubMed  Google Scholar 

  2. Himelstein BP. Osteosarcoma and other bone cancers. Curr Opin Oncol. 1998;10:326–33.

    Article  CAS  PubMed  Google Scholar 

  3. Bacci G, Longhi A, Cesari M, Versari M, Bertoni F. Influence of local recurrence on survival in patients with extremity osteosarcoma treated with neoadjuvant chemotherapy: the experience of a single institution with 44 patients. Cancer. 2006;106:2701–6.

    Article  PubMed  Google Scholar 

  4. Picci P, Mercuri M, Ferrari S, et al. Survival in high-grade osteosarcoma: improvement over 21 years at a single institution. Ann Oncol. 2010;21:1366–73.

    Article  CAS  PubMed  Google Scholar 

  5. Pfeifer GP, Dammann R. Methylation of the tumor suppressor gene RASSF1A in human tumors. Biochemistry (Mosc). 2005;70:576–83.

    Article  CAS  Google Scholar 

  6. Dammann R, Schagdarsurengin U, Seidel C, et al. The tumor suppressor RASSF1A in human carcinogenesis: an update. Histol Histopathol. 2005;20:645–63.

    CAS  PubMed  Google Scholar 

  7. Agathanggelou A, Honorio S, Macartney DP, et al. Methylation associated inactivation of RASSF1A from region 3p21.3 in lung, breast and ovarian tumours. Oncogene. 2001;20:1509–18.

    Article  CAS  PubMed  Google Scholar 

  8. Amin KS, Banerjee PP. The cellular functions of RASSF1A and its inactivation in prostate cancer. J Carcinog. 2012;11:3.

    Article  PubMed  PubMed Central  Google Scholar 

  9. 9. Zhou PH, Zheng JB, Wei GB, et al. Lentivirus-mediated RASSF1A expression suppresses aggressive phenotypes of gastric cancer cells in vitro and in vivo. Gene Ther 2015.

  10. Fu L, Zhang S. RASSF1A promotes apoptosis and suppresses the proliferation of ovarian cancer cells. Int J Mol Med. 2014;33:1153–60.

    CAS  PubMed  Google Scholar 

  11. Guo C, Zhang X, Pfeifer GP. The tumor suppressor RASSF1A prevents dephosphorylation of the mammalian STE20-like kinases MST1 and MST2. J Biol Chem. 2011;286:6253–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Oh HJ, Lee KK, Song SJ, et al. Role of the tumor suppressor RASSF1A in Mst1-mediated apoptosis. Cancer Res. 2006;66:2562–9.

    Article  CAS  PubMed  Google Scholar 

  13. Lim S, Yang MH, Park JH, et al. Inactivation of the RASSF1A in osteosarcoma. Oncol Rep. 2003;10:897–901.

    CAS  PubMed  Google Scholar 

  14. Harada K, Toyooka S, Maitra A, et al. Aberrant promoter methylation and silencing of the RASSF1A gene in pediatric tumors and cell lines. Oncogene. 2002;21:4345–9.

    Article  CAS  PubMed  Google Scholar 

  15. Li C, Shi X, Zhou G, et al. The canonical Wnt-beta-catenin pathway in development and chemotherapy of osteosarcoma. Front Biosci (Landmark Ed). 2013;18:1384–91.

    Article  CAS  Google Scholar 

  16. MacDonald BT, Tamai K, He X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell. 2009;17:9–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hoang BH, Kubo T, Healey JH, et al. Dickkopf 3 inhibits invasion and motility of Saos-2 osteosarcoma cells by modulating the Wnt-beta-catenin pathway. Cancer Res. 2004;64:2734–9.

    Article  CAS  PubMed  Google Scholar 

  18. Liu Y, Wang W, Xu J, et al. Dihydroartemisinin inhibits tumor growth of human osteosarcoma cells by suppressing Wnt/beta-catenin signaling. Oncol Rep. 2013;30:1723–30.

    CAS  PubMed  Google Scholar 

  19. Lin CH, Guo Y, Ghaffar S, et al. Dkk-3, a secreted wnt antagonist, suppresses tumorigenic potential and pulmonary metastasis in osteosarcoma. Sarcoma. 2013;2013:147541.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Feng L, Li J, Yan LD, Tang J. RASSF1A suppresses proliferation of cervical cancer cells. Asian Pac J Cancer Prev. 2014;15:5917–20.

    Article  PubMed  Google Scholar 

  21. Dallol A, Agathanggelou A, Tommasi S, et al. Involvement of the RASSF1A tumor suppressor gene in controlling cell migration. Cancer Res. 2005;65:7653–9.

    CAS  PubMed  Google Scholar 

  22. Shivakumar L, Minna J, Sakamaki T, Pestell R, White MA. The RASSF1A tumor suppressor blocks cell cycle progression and inhibits cyclin D1 accumulation. Mol Cell Biol. 2002;22:4309–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. van der Weyden L, Papaspyropoulos A, Poulogiannis G, et al. Loss of RASSF1A synergizes with deregulated RUNX2 signaling in tumorigenesis. Cancer Res. 2012;72:3817–27.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Yi M, Yang J, Chen X, et al. RASSF1A suppresses melanoma development by modulating apoptosis and cell-cycle progression. J Cell Physiol. 2011;226:2360–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dreijerink K, Braga E, Kuzmin I, et al. The candidate tumor suppressor gene, RASSF1A, from human chromosome 3p21.3 is involved in kidney tumorigenesis. Proc Natl Acad Sci U S A. 2001;98:7504–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kuzmin I, Gillespie JW, Protopopov A, et al. The RASSF1A tumor suppressor gene is inactivated in prostate tumors and suppresses growth of prostate carcinoma cells. Cancer Res. 2002;62:3498–502.

    CAS  PubMed  Google Scholar 

  27. Thaler S, Hahnel PS, Schad A, Dammann R, Schuler M. RASSF1A mediates p21Cip1/Waf1-dependent cell cycle arrest and senescence through modulation of the Raf-MEK-ERK pathway and inhibition of Akt. Cancer Res. 2009;69:1748–57.

    Article  CAS  PubMed  Google Scholar 

  28. Cai Y, Cai T, Chen Y. Wnt pathway in osteosarcoma, from oncogenic to therapeutic. J Cell Biochem. 2014;115:625–31.

    Article  CAS  PubMed  Google Scholar 

  29. Anastas JN, Moon RT. WNT signalling pathways as therapeutic targets in cancer. Nat Rev Cancer. 2013;13:11–26.

    Article  CAS  PubMed  Google Scholar 

  30. McCubrey JA, Steelman LS, Bertrand FE, et al. Multifaceted roles of GSK-3 and Wnt/β-catenin in hematopoiesis and leukemogenesis: opportunities for therapeutic intervention. Leukemia. 2014;28:15–33.

    Article  CAS  PubMed  Google Scholar 

  31. Kitagishi Y, Nakanishi A, Ogura Y, Matsuda S. Dietary regulation of PI3K/AKT/GSK-3β pathway in Alzheimer’s disease. Alzheimers Res Ther. 2014;6:35.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Fang Zang.

Ethics declarations

The study was pre-approved by the Institutional Ethics Committee of the Third Xiangya Hospital and written informed consent was obtained from all patients.

Conflicts of interest

None

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, WG., Chen, SJ., He, JS. et al. The tumor suppressive role of RASSF1A in osteosarcoma through the Wnt signaling pathway. Tumor Biol. 37, 8869–8877 (2016). https://doi.org/10.1007/s13277-015-4660-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-4660-z

Keywords

Navigation