Tumor Biology

, Volume 37, Issue 7, pp 9825–9835 | Cite as

Combined niclosamide with cisplatin inhibits epithelial-mesenchymal transition and tumor growth in cisplatin-resistant triple-negative breast cancer

  • Junjun Liu
  • Xiaosong Chen
  • Toby Ward
  • Mark Pegram
  • Kunwei Shen
Original Article


Women with triple-negative breast cancer have worse prognosis compared to other breast cancer subtypes. Acquired drug resistance remains to be an important reason influencing triple-negative breast cancer treatment efficacy. A prevailing theory postulates that the cancer resistance and recurrence results from a subpopulation of tumor cells with stemness program, which are often insensitive to cytotoxic drugs such as cisplatin. Recent studies suggested that niclosamide, an anti-helminthic drug, has potential therapeutic activities against breast cancer stem cells, which prompts us to determine its roles on eliminating cisplatin-resistant cancer cells. Hence, we established a stable cisplatin-resistant MDA-MB-231 cell line (231-CR) through continuously exposure to increasing concentrations of cisplatin (5–20 μmol/l). Interestingly, 231-CR exhibited properties associated to epithelial-mesenchymal transition with enhanced invasion, preserved proliferation, increased mammosphere formation, and reduced apoptosis compared to naive MDA-MB-231 sensitive cells (231-CS). Importantly, niclosamide or combination with cisplatin inhibited both 231-CS and 231-CR cell proliferation in vitro. In addition, niclosamide reversed the EMT phenotype of 231-CR by downregulation of snail and vimentin. Mechanistically, niclosamide treatment in combination with or without cisplatin significantly inhibited Akt, ERK, and Src signaling pathways. In vivo study showed that niclosamide or combination with cisplatin could repress the growth of xenografts originated from either 231-CS or 231-CR cells, with prominent suppression of Ki67 expression. These findings suggested that niclosamide might serve as a novel therapeutic strategy, either alone or in combination with cisplatin, for triple-negative breast cancer treatment, especially those resistant to cisplatin.


Triple-negative breast cancer Cisplatin resistance Epithelial-mesenchymal transition Niclosamide 



This work was supported by the National Natural Science Foundation of China (Grant Number: 81172520) and the Technology Innovation Act Plan of the Shanghai Municipal Science and Technology Commission (Grant Numbers: 14411950200 and 14411950201).

Compliance with ethical standards

All experimental xenograft procedures were carried out in compliance with the institutional requirements and approved by the Shanghai Jiao Tong University School of Medicine Committee for the Use and Care of Animals.

Conflicts of interest

M. Pegram served as a consultant advisory board member for Roche/Genentech, Inc. Other authors declare that they have no conflicts of interest in the studies described.


  1. 1.
    Foulkes WD, Smith IE, Reis-Filho JS. Triple-negative breast cancer. N Engl J Med. 2010;363(20):1938–48. doi: 10.1056/NEJMra1001389.CrossRefPubMedGoogle Scholar
  2. 2.
    Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. 2011;121(7):2750–67. doi: 10.1172/JCI45014.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Sabe H. Cancer early dissemination: cancerous epithelial-mesenchymal transdifferentiation and transforming growth factor beta signalling. J Biochem. 2011;149(6):633–9. doi: 10.1093/jb/mvr044.CrossRefPubMedGoogle Scholar
  4. 4.
    Iseri OD, Kars MD, Arpaci F, Atalay C, Pak I, Gunduz U. Drug resistant MCF-7 cells exhibit epithelial-mesenchymal transition gene expression pattern. Biomed Pharmacother Biomed Pharmacother. 2011;65(1):40–5. doi: 10.1016/j.biopha.2010.10.004.CrossRefPubMedGoogle Scholar
  5. 5.
    Lehmann BD, Pietenpol JA, Tan AR. Triple-negative breast cancer: molecular subtypes and new targets for therapy. Am Soc Clin Oncol Educ Book ASCO Am Soc Clin Oncol Meet. 2015;35:e31–9. doi: 10.14694/EdBook_AM.2015.35.e31.CrossRefGoogle Scholar
  6. 6.
    Marsh S. Pharmacogenomics of taxane/platinum therapy in ovarian cancer. Int J Gynecol Cancer Off J Int Gynecol Cancer Soc. 2009;19 Suppl 2:S30–4. doi: 10.1111/IGC.0b013e3181c10513.CrossRefGoogle Scholar
  7. 7.
    von Minckwitz G, Schneeweiss A, Loibl S, Salat C, Denkert C, Rezai M, et al. Neoadjuvant carboplatin in patients with triple-negative and HER2-positive early breast cancer (GeparSixto; GBG 66): a randomised phase 2 trial. Lancet Oncol. 2014;15(7):747–56. doi: 10.1016/S1470-2045(14)70160-3.CrossRefGoogle Scholar
  8. 8.
    Silver DP, Richardson AL, Eklund AC, Wang ZC, Szallasi Z, Li Q, et al. Efficacy of neoadjuvant Cisplatin in triple-negative breast cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2010;28(7):1145–53. doi: 10.1200/JCO.2009.22.4725.CrossRefGoogle Scholar
  9. 9.
    Pink RC, Samuel P, Massa D, Caley DP, Brooks SA, Carter DR. The passenger strand, miR-21-3p, plays a role in mediating cisplatin resistance in ovarian cancer cells. Gynecol Oncol. 2015;137(1):143–51. doi: 10.1016/j.ygyno.2014.12.042.CrossRefPubMedGoogle Scholar
  10. 10.
    Lo Iacono M, Monica V, Vavala T, Gisabella M, Saviozzi S, Bracco E, et al. ATF2 contributes to cisplatin resistance in non-small cell lung cancer and celastrol induces cisplatin resensitization through inhibition of JNK/ATF2 pathway. Int J Cancer. 2015;136(11):2598–609. doi: 10.1002/ijc.29302.CrossRefPubMedGoogle Scholar
  11. 11.
    Yu L, Gu C, Zhong D, Shi L, Kong Y, Zhou Z, et al. Induction of autophagy counteracts the anticancer effect of cisplatin in human esophageal cancer cells with acquired drug resistance. Cancer Lett. 2014;355(1):34–45. doi: 10.1016/j.canlet.2014.09.020.CrossRefPubMedGoogle Scholar
  12. 12.
    Kim H, D'Andrea AD. Regulation of DNA cross-link repair by the Fanconi anemia/BRCA pathway. Genes Dev. 2012;26(13):1393–408. doi: 10.1101/gad.195248.112.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Wu DW, Lee MC, Hsu NY, Wu TC, Wu JY, Wang YC, et al. FHIT loss confers cisplatin resistance in lung cancer via the AKT/NF-kappaB/Slug-mediated PUMA reduction. Oncogene. 2015;34(29):3882–3. doi: 10.1038/onc.2015.203.CrossRefPubMedGoogle Scholar
  14. 14.
    Haslehurst AM, Koti M, Dharsee M, Nuin P, Evans K, Geraci J, et al. EMT transcription factors snail and slug directly contribute to cisplatin resistance in ovarian cancer. BMC Cancer. 2012;12:91. doi: 10.1186/1471-2407-12-91.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Wu Y, Ginther C, Kim J, Mosher N, Chung S, Slamon D, et al. Expression of Wnt3 activates Wnt/beta-catenin pathway and promotes EMT-like phenotype in trastuzumab-resistant HER2-overexpressing breast cancer cells. Mol Cancer Res MCR. 2012;10(12):1597–606. doi: 10.1158/1541-7786.MCR-12-0155-T.CrossRefPubMedGoogle Scholar
  16. 16.
    Santisteban M, Reiman JM, Asiedu MK, Behrens MD, Nassar A, Kalli KR, et al. Immune-induced epithelial to mesenchymal transition in vivo generates breast cancer stem cells. Cancer Res. 2009;69(7):2887–95. doi: 10.1158/0008-5472.CAN-08-3343.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Pavese JM, Bergan RC. Circulating tumor cells exhibit a biologically aggressive cancer phenotype accompanied by selective resistance to chemotherapy. Cancer Lett. 2014;352(2):179–86. doi: 10.1016/j.canlet.2014.06.012.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Osada T, Chen M, Yang XY, Spasojevic I, Vandeusen JB, Hsu D, et al. Antihelminth compound niclosamide downregulates Wnt signaling and elicits antitumor responses in tumors with activating APC mutations. Cancer Res. 2011;71(12):4172–82. doi: 10.1158/0008-5472.CAN-10-3978.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Merschjohann K, Steverding D. In vitro trypanocidal activity of the anti-helminthic drug niclosamide. Exp Parasitol. 2008;118(4):637–40. doi: 10.1016/j.exppara.2007.12.001.CrossRefPubMedGoogle Scholar
  20. 20.
    Jin Y, Lu Z, Ding K, Li J, Du X, Chen C, et al. Antineoplastic mechanisms of niclosamide in acute myelogenous leukemia stem cells: inactivation of the NF-kappaB pathway and generation of reactive oxygen species. Cancer Res. 2010;70(6):2516–27. doi: 10.1158/0008-5472.CAN-09-3950.CrossRefPubMedGoogle Scholar
  21. 21.
    Chen X, Zhao M, Hao M, Sun X, Wang J, Mao Y, et al. Dual inhibition of PI3K and mTOR mitigates compensatory AKT activation and improves tamoxifen response in breast cancer. Mol Cancer Res MCR. 2013;11(10):1269–78. doi: 10.1158/1541-7786.MCR-13-0212.CrossRefPubMedGoogle Scholar
  22. 22.
    Gupta PB, Onder TT, Jiang G, Tao K, Kuperwasser C, Weinberg RA, et al. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell. 2009;138(4):645–59. doi: 10.1016/j.cell.2009.06.034.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Cheng G, Sun X, Wang J, Xiao G, Wang X, Fan X, et al. HIC1 silencing in triple-negative breast cancer drives progression through misregulation of LCN2. Cancer Res. 2014;74(3):862–72. doi: 10.1158/0008-5472.CAN-13-2420.CrossRefPubMedGoogle Scholar
  24. 24.
    Michaelis M, Klassert D, Barth S, Suhan T, Breitling R, Mayer B, et al. Chemoresistance acquisition induces a global shift of expression of aniogenesis-associated genes and increased pro-angogenic activity in neuroblastoma cells. Mol Cancer. 2009;8:80. doi: 10.1186/1476-4598-8-80.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Piskareva O, Harvey H, Nolan J, Conlon R, Alcock L, Buckley P, et al. The development of cisplatin resistance in neuroblastoma is accompanied by epithelial to mesenchymal transition in vitro. Cancer Lett. 2015;364(2):142–55. doi: 10.1016/j.canlet.2015.05.004.CrossRefPubMedGoogle Scholar
  26. 26.
    Hollier BG, Evans K, Mani SA. The epithelial-to-mesenchymal transition and cancer stem cells: a coalition against cancer therapies. J Mammary Gland Biol Neoplasia. 2009;14(1):29–43. doi: 10.1007/s10911-009-9110-3.CrossRefPubMedGoogle Scholar
  27. 27.
    Kurrey NK, Jalgaonkar SP, Joglekar AV, Ghanate AD, Chaskar PD, Doiphode RY, et al. Snail and slug mediate radioresistance and chemoresistance by antagonizing p53-mediated apoptosis and acquiring a stem-like phenotype in ovarian cancer cells. Stem Cells. 2009;27(9):2059–68. doi: 10.1002/stem.154.CrossRefPubMedGoogle Scholar
  28. 28.
    Kim MR, Choi HK, Cho KB, Kim HS, Kang KW. Involvement of Pin1 induction in epithelial-mesenchymal transition of tamoxifen-resistant breast cancer cells. Cancer Sci. 2009;100(10):1834–41. doi: 10.1111/j.1349-7006.2009.01260.x.CrossRefPubMedGoogle Scholar
  29. 29.
    Austin P, Freeman SA, Gray CA, Gold MR, Vogl AW, Andersen RJ, et al. The invasion inhibitor sarasinoside A1 reverses mesenchymal tumor transformation in an E-cadherin-independent manner. Mol Cancer Res MCR. 2013;11(5):530–40. doi: 10.1158/1541-7786.MCR-12-0385.CrossRefPubMedGoogle Scholar
  30. 30.
    Kondaveeti Y, Guttilla Reed IK, White BA. Epithelial-mesenchymal transition induces similar metabolic alterations in two independent breast cancer cell lines. Cancer Lett. 2015;364(1):44–58. doi: 10.1016/j.canlet.2015.04.025.CrossRefPubMedGoogle Scholar
  31. 31.
    Ciavardelli D, Rossi C, Barcaroli D, Volpe S, Consalvo A, Zucchelli M, et al. Breast cancer stem cells rely on fermentative glycolysis and are sensitive to 2-deoxyglucose treatment. Cell Death Disease. 2014;5:e1336. doi: 10.1038/cddis.2014.285.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Al-Hadiya BM. Niclosamide: comprehensive profile. Profiles Drug Subst Excip Relat Methodol. 2005;32:67–96. doi: 10.1016/S0099-5428(05)32002-8.CrossRefPubMedGoogle Scholar
  33. 33.
    Londono-Joshi AI, Arend RC, Aristizabal L, Lu W, Samant RS, Metge BJ, et al. Effect of niclosamide on basal-like breast cancers. Mol Cancer Ther. 2014;13(4):800–11. doi: 10.1158/1535-7163.MCT-13-0555.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Khanim FL, Merrick BA, Giles HV, Jankute M, Jackson JB, Giles LJ, et al. Redeployment-based drug screening identifies the anti-helminthic niclosamide as anti-myeloma therapy that also reduces free light chain production. Blood Cancer J. 2011;1(10):e39. doi: 10.1038/bcj.2011.38.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Park SJ, Shin JH, Kang H, Hwang JJ, Cho DH. Niclosamide induces mitochondria fragmentation and promotes both apoptotic and autophagic cell death. BMB Rep. 2011;44(8):517–22.CrossRefPubMedGoogle Scholar
  36. 36.
    Li Y, Li PK, Roberts MJ, Arend RC, Samant RS, Buchsbaum DJ. Multi-targeted therapy of cancer by niclosamide: a new application for an old drug. Cancer Lett. 2014;349(1):8–14. doi: 10.1016/j.canlet.2014.04.003.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Wang YC, Chao TK, Chang CC, Yo YT, Yu MH, Lai HC. Drug screening identifies niclosamide as an inhibitor of breast cancer stem-like cells. PLoS One. 2013;8(9):e74538. doi: 10.1371/journal.pone.0074538.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Yo YT, Lin YW, Wang YC, Balch C, Huang RL, Chan MW, et al. Growth inhibition of ovarian tumor-initiating cells by niclosamide. Mol Cancer Ther. 2012;11(8):1703–12. doi: 10.1158/1535-7163.MCT-12-0002.CrossRefPubMedGoogle Scholar
  39. 39.
    Wang AM, Ku HH, Liang YC, Chen YC, Hwu YM, Yeh TS. The autonomous notch signal pathway is activated by baicalin and baicalein but is suppressed by niclosamide in K562 cells. J Cell Biochem. 2009;106(4):682–92. doi: 10.1002/jcb.22065.CrossRefPubMedGoogle Scholar
  40. 40.
    Lu W, Lin C, Roberts MJ, Waud WR, Piazza GA, Li Y. Niclosamide suppresses cancer cell growth by inducing Wnt co-receptor LRP6 degradation and inhibiting the Wnt/beta-catenin pathway. PLoS One. 2011;6(12):e29290. doi: 10.1371/journal.pone.0029290.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Li R, Hu Z, Sun SY, Chen ZG, Owonikoko TK, Sica GL, et al. Niclosamide overcomes acquired resistance to erlotinib through suppression of STAT3 in non-small cell lung cancer. Mol Cancer Ther. 2013;12(10):2200–12. doi: 10.1158/1535-7163.MCT-13-0095.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Balgi AD, Fonseca BD, Donohue E, Tsang TC, Lajoie P, Proud CG, et al. Screen for chemical modulators of autophagy reveals novel therapeutic inhibitors of mTORC1 signaling. PLoS One. 2009;4(9):e7124. doi: 10.1371/journal.pone.0007124.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  1. 1.Comprehensive Breast Health Center, Ruijin HospitalShanghai Jiaotong Univerisity School of MedicineShanghaiChina
  2. 2.Stanford Cancer InstituteStanford University School of MedicineStanfordUSA

Personalised recommendations