Advertisement

Tumor Biology

, Volume 37, Issue 7, pp 9273–9283 | Cite as

Functional characterization of TRPM7 in nasopharyngeal carcinoma and its knockdown effects on tumorigenesis

  • Yi Qin
  • Zhi-Wei Liao
  • Jing-Yan Luo
  • Wen-Zhe Wu
  • An-Shang Lu
  • Pu-Xia Su
  • Bing-Quan Lai
  • Xiao-Xiao Wang
Original Article

Abstract

The aim of this study was to evaluate the association of functional expression of TRPM7 with nasopharyngeal carcinoma (NPC) growth. We examined the correlation of TRPM7 expression with cell growth and proliferation, cell cycle, and apoptosis in vitro in NPC cell lines and NPC tumorigenesis in mice by conducting experiments in mice and by further analyzing the tumor volume and growth. We further explored to see whether there is any positive correlation with the TRPM7 knockdown in NPC cells with their sensitivity to radiation. We found that the functional expression of TRPM7 in nasopharyngeal carcinoma is a critical requirement for physiological processes such as cell cycle, resistance to apoptosis, and cell proliferation. TRPM7 knockdown also enhanced sensitivity to radiotherapy of nasopharyngeal carcinoma. Moreover, we identified TRPM7 as a novel potential regulator of cell proliferation in NPC, through signal transducer and activator of transcription 3 (STAT3)-mediated signaling pathway and other anti-apoptotic factors. TRPM7 and STAT3 activation might be critical for the growth of NPC cells and could be an effective target for treatment of nasopharyngeal carcinoma.

Keywords

Nasopharyngeal carcinoma TRPM7 Prognosis Apoptosis CNE-1 cells STAT3 Radiotherapy 

Notes

Acknowledgments

This study was supported by the Natural Science Foundation of Guangdong Province, China (S2013040014989) and China Postdoctoral Science Foundation (2015M570742).

Author contributions

XX. W and BQ. L conceived and designed the study and critically revised the manuscript.

Y. Q, ZW. L, and JY. L performed the experiments, analyzed the data, and drafted the manuscript.

WZ. W, AS. L, and PX. S helped in study design, study implementation, and manuscript revision.

All authors read and approved the final manuscript.

Compliance with ethical standards

Conflicts of interest

None

References

  1. 1.
    Cho WC. Nasopharyngeal carcinoma: molecular biomarker discovery and progress. Mol Cancer. 2007;6:1.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Fang W, Li X, Jiang Q, Liu Z, Yang H, Wang S, et al. Transcriptional patterns, biomarkers and pathways characterizing nasopharyngeal carcinoma of southern China. J Transl Med. 2008;6:32.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Chang ET, Adami HO. The enigmatic epidemiology of nasopharyngeal carcinoma. Cancer Epidemiol Biomarkers Prev. 2006;15:1765–77.CrossRefPubMedGoogle Scholar
  4. 4.
    Sham JS, Choy D. Prognostic factors of nasopharyngeal carcinoma: a review of 759 patients. Br J Radiol. 1990;63:51–8.CrossRefPubMedGoogle Scholar
  5. 5.
    Altun M, Fandi A, Dupuis O, Cvitkovic E, Krajina Z, Eschwege F. Undifferentiated nasopharyngeal cancer (UCNT): current diagnostic and therapeutic aspects. Int J Radiat Oncol Biol Phys. 1995;32:859–77.CrossRefPubMedGoogle Scholar
  6. 6.
    Chow E, Payne D, Keane T, Panzarella T, Izard MA. Enhanced control by radiotherapy of cervical lymph node metastases arising from nasopharyngeal carcinoma compared with nodal metastases from other head and neck squamous cell carcinomas. Int J Radiat Oncol Biol Phys. 1997;39:149–54.CrossRefPubMedGoogle Scholar
  7. 7.
    Liu DB, Hu GY, Long GX, Qiu H, Mei Q, Hu GQ. Celecoxib induces apoptosis and cell-cycle arrest in nasopharyngeal carcinoma cell lines via inhibition of stat3 phosphorylation. Acta Pharmacol Sin. 2012;33:682–90.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Yip KW, Mocanu JD, Au PY, Sleep GT, Huang D, Busson P, et al. Combination bcl-2 antisense and radiation therapy for nasopharyngeal cancer. Clin Cancer Res. 2005;11:8131–44.CrossRefPubMedGoogle Scholar
  9. 9.
    Chen JP, Luan Y, You CX, Chen XH, Luo RC, Li R. TRPM7 regulates the migration of human nasopharyngeal carcinoma cell by mediating Ca(2+) influx. Cell Calcium. 2010;47:425–32.CrossRefPubMedGoogle Scholar
  10. 10.
    Chen JP, Wang J, Luan Y, Wang CX, Li WH, Zhang JB, et al. Trpm7 promotes the metastatic process in human nasopharyngeal carcinoma. Cancer Lett. 2015;356:483–90.CrossRefPubMedGoogle Scholar
  11. 11.
    Ma J, Liu L, Tang L, Zong J, Lin A, Lu T, et al. Retropharyngeal lymph node metastasis in nasopharyngeal carcinoma: prognostic value and staging categories. Clin Cancer Res. 2007;13:1445–52.CrossRefPubMedGoogle Scholar
  12. 12.
    Tang L, Mao Y, Liu L, Liang S, Chen Y, Sun Y, et al. The volume to be irradiated during selective neck irradiation in nasopharyngeal carcinoma: analysis of the spread patterns in lymph nodes by magnetic resonance imaging. Cancer. 2009;115:680–8.CrossRefPubMedGoogle Scholar
  13. 13.
    Sham JS, Choy D, Wei WI. Nasopharyngeal carcinoma: orderly neck node spread. Int J Radiat Oncol Biol Phys. 1990;19:929–33.CrossRefPubMedGoogle Scholar
  14. 14.
    Ma BB, Chan AT. Systemic treatment strategies and therapeutic monitoring for advanced nasopharyngeal carcinoma. Expert Rev Anticancer Ther. 2006;6:383–94.CrossRefPubMedGoogle Scholar
  15. 15.
    Mareel M, Leroy A. Clinical, cellular, and molecular aspects of cancer invasion. Physiol Rev. 2003;83:337–76.CrossRefPubMedGoogle Scholar
  16. 16.
    Entschladen F, Zanker KS. Locomotion of tumor cells: a molecular comparison to migrating pre- and postmitotic leukocytes. J Cancer Res Clin Oncol. 2000;126:671–81.CrossRefPubMedGoogle Scholar
  17. 17.
    Monteith GR, McAndrew D, Faddy HM, Roberts-Thomson SJ. Calcium and cancer: targeting ca2+ transport. Nat Rev Cancer. 2007;7:519–30.CrossRefPubMedGoogle Scholar
  18. 18.
    Jiang J, Li MH, Inoue K, Chu XP, Seeds J, Xiong ZG. Transient receptor potential melastatin 7-like current in human head and neck carcinoma cells: role in cell proliferation. Cancer Res. 2007;67:10929–38.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Guilbert A, Gautier M, Dhennin-Duthille I, Haren N, Sevestre H, Ouadid-Ahidouch H. Evidence that trpm7 is required for breast cancer cell proliferation. Am J Physiol Cell Physiol. 2009;297:C493–502.CrossRefPubMedGoogle Scholar
  20. 20.
    Kim BJ, Park EJ, Lee JH, Jeon JH, Kim SJ, So I. Suppression of transient receptor potential melastatin 7 channel induces cell death in gastric cancer. Cancer Sci. 2008;99:2502–9.CrossRefPubMedGoogle Scholar
  21. 21.
    Kim BJ, Nah SY, Jeon JH, So I, Kim SJ. Transient receptor potential melastatin 7 channels are involved in ginsenoside rg3-induced apoptosis in gastric cancer cells. Basic Clin Pharmacol Toxicol. 2011;109:233–9.CrossRefPubMedGoogle Scholar
  22. 22.
    Jiang J, Lei WB, Shi JB, Su ZZ, Xiong ZG. Transient receptor potential melastatin 7 channel protein in human head and neck carcinoma cells and role in cell proliferation. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2008;43:451–5.PubMedGoogle Scholar
  23. 23.
    Yee NS, Zhou W, Liang IC. Transient receptor potential ion channel Trpm7 regulates exocrine pancreatic epithelial proliferation by Mg2+-sensitive Socs3a signaling in development and cancer. Dis Model Mech. 2011;4:240–54.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Rybarczyk P, Gautier M, Hague F, Dhennin-Duthille I, Chatelain D, Kerr-Conte J, et al. Transient receptor potential melastatin-related 7 channel is overexpressed in human pancreatic ductal adenocarcinomas and regulates human pancreatic cancer cell migration. Int J Cancer. 2012;131:E851–61.CrossRefPubMedGoogle Scholar
  25. 25.
    Sun Y, Selvaraj S, Varma A, Derry S, Sahmoun AE, Singh BB. Increase in serum Ca2+/Mg2+ ratio promotes proliferation of prostate cancer cells by activating TRPM7 channels. J Biol Chem. 2013;288:255–63.CrossRefPubMedGoogle Scholar
  26. 26.
    Hanano T, Hara Y, Shi J, Morita H, Umebayashi C, Mori E, et al. Involvement of Trpm7 in cell growth as a spontaneously activated Ca2+ entry pathway in human retinoblastoma cells. J Pharmacol Sci. 2004;95:403–19.CrossRefPubMedGoogle Scholar
  27. 27.
    Zierler S, Yao G, Zhang Z, Kuo WC, Porzgen P, Penner R, et al. Waixenicin a inhibits cell proliferation through magnesium-dependent block of transient receptor potential melastatin 7 (trpm7) channels. J Biol Chem. 2011;286:39328–35.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Sahni J, Tamura R, Sweet IR, Scharenberg AM. Trpm7 regulates quiescent/proliferative metabolic transitions in lymphocytes. Cell Cycle. 2010;9:3565–74.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Liu M, Inoue K, Leng T, Guo S, Xiong ZG. Trpm7 channels regulate glioma stem cell through stat3 and notch signaling pathways. Cell Signal. 2014;26:2773–81.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Zhou W, Guo S, Xiong Z, Liu M. Oncogenic role and therapeutic target of transient receptor potential melastatin 7 channel in malignancy. Expert Opin Ther Targets. 2014;18:1177–96.CrossRefPubMedGoogle Scholar
  31. 31.
    Nadler MJ, Hermosura MC, Inabe K, Perraud AL, Zhu Q, Stokes AJ, et al. Ltrpc7 is a mg.atp-regulated divalent cation channel required for cell viability. Nature. 2001;411:590–5.CrossRefPubMedGoogle Scholar
  32. 32.
    Runnels LW, Yue L, Clapham DE. Trp-plik, a bifunctional protein with kinase and ion channel activities. Science. 2001;291:1043–7.CrossRefPubMedGoogle Scholar
  33. 33.
    Jiang X, Newell EW, Schlichter LC. Regulation of a trpm7-like current in rat brain microglia. J Biol Chem. 2003;278:42867–76.CrossRefPubMedGoogle Scholar
  34. 34.
    Schmitz C, Perraud AL, Johnson CO, Inabe K, Smith MK, Penner R, et al. Regulation of vertebrate cellular Mg2+ homeostasis by Trpm7. Cell. 2003;114:191–200.CrossRefPubMedGoogle Scholar
  35. 35.
    Wykes RC, Lee M, Duffy SM, Yang W, Seward EP, Bradding P. Functional transient receptor potential melastatin 7 channels are critical for human mast cell survival. J Immunol. 2007;179:4045–52.CrossRefPubMedGoogle Scholar
  36. 36.
    Lui VW, Wong EY, Ho Y, Hong B, Wong SC, Tao Q, et al. Stat3 activation contributes directly to Epstein-Barr virus-mediated invasiveness of nasopharyngeal cancer cells in vitro. Int J Cancer. 2009;125:1884–93.CrossRefPubMedGoogle Scholar
  37. 37.
    Wang Z, Luo F, Li L, Yang L, Hu D, Ma X, et al. Stat3 activation induced by Epstein-Barr virus latent membrane protein 1 causes vascular endothelial growth factor expression and cellular invasiveness via jak3 and erk signaling. Eur J Cancer. 2010;46:2996–3006.CrossRefPubMedGoogle Scholar
  38. 38.
    Ma N, Kawanishi M, Hiraku Y, Murata M, Huang GW, Huang Y, et al. Reactive nitrogen species-dependent dna damage in ebv-associated nasopharyngeal carcinoma: the relation to stat3 activation and egfr expression. Int J Cancer. 2008;122:2517–25.CrossRefPubMedGoogle Scholar
  39. 39.
    Liu YP, Tan YN, Wang ZL, Zeng L, Lu ZX, Li LL, et al. Phosphorylation and nuclear translocation of stat3 regulated by the Epstein-Barr virus latent membrane protein 1 in nasopharyngeal carcinoma. Int J Mol Med. 2008;21:153–62.PubMedGoogle Scholar
  40. 40.
    Peng G, Cao RB, Li YH, Zou ZW, Huang J, Ding Q. Alterations of cell cycle control proteins shp1/2, p16, cdk4 and cyclin d1 in radioresistant nasopharyngeal carcinoma cells. Mol Med Rep. 2014;10:1709–16.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Fu SM, Xu MX, Lin SM, Liang Z, Cai JH. Association of cyclin d1 and survivin expression with sensitivity to radiotherapy in patients with nasopharyngeal carcinoma. Genet Mol Res. 2014;13:3502–9.CrossRefPubMedGoogle Scholar
  42. 42.
    Pan Y, Zhang Q, Tian L, Wang X, Fan X, Zhang H, et al. Jab1/csn5 negatively regulates p27 and plays a role in the pathogenesis of nasopharyngeal carcinoma. Cancer Res. 2012;72:1890–900.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Yee NS, Zhou W, Lee M. Transient receptor potential channel trpm8 is over-expressed and required for cellular proliferation in pancreatic adenocarcinoma. Cancer Lett. 2010;297:49–55.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Chun SG, Zhou W, Yee NS. Combined targeting of histone deacetylases and hedgehog signaling enhances cytoxicity in pancreatic cancer. Cancer Biol Ther. 2009;8:1328–39.CrossRefPubMedGoogle Scholar
  45. 45.
    Liu X, Lv XB, Wang XP, Sang Y, Xu S, Hu K, et al. Mir-138 suppressed nasopharyngeal carcinoma growth and tumorigenesis by targeting the ccnd1 oncogene. Cell Cycle. 2012;11:2495–506.CrossRefPubMedGoogle Scholar
  46. 46.
    Meng X, Cai C, Wu J, Cai S, Ye C, Chen H, et al. Trpm7 mediates breast cancer cell migration and invasion through the mapk pathway. Cancer Lett. 2013;333:96–102.CrossRefPubMedGoogle Scholar
  47. 47.
    Wang J, Xiao L, Luo CH, Zhou H, Hu J, Tang YX, et al. Overexpression of trpm7 is associated with poor prognosis in human ovarian carcinoma. Asian Pac J Cancer Prev. 2014;15:3955–8.CrossRefPubMedGoogle Scholar
  48. 48.
    Dhennin-Duthille I, Gautier M, Faouzi M, Guilbert A, Brevet M, Vaudry D, et al. High expression of transient receptor potential channels in human breast cancer epithelial cells and tissues: correlation with pathological parameters. Cell Physiol Biochem. 2011;28:813–22.CrossRefPubMedGoogle Scholar
  49. 49.
    Gao H, Chen X, Du X, Guan B, Liu Y, Zhang H. Egf enhances the migration of cancer cells by up-regulation of trpm7. Cell Calcium. 2011;50:559–68.CrossRefPubMedGoogle Scholar
  50. 50.
    Middelbeek J, Kuipers AJ, Henneman L, Visser D, Eidhof I, van Horssen R, et al. Trpm7 is required for breast tumor cell metastasis. Cancer Res. 2012;72:4250–61.CrossRefPubMedGoogle Scholar
  51. 51.
    Evan GI, Vousden KH. Proliferation, cell cycle and apoptosis in cancer. Nature. 2001;411:342–8.CrossRefPubMedGoogle Scholar
  52. 52.
    Lin SY, Corey DP. Trp channels in mechanosensation. Curr Opin Neurobiol. 2005;15:350–7.CrossRefPubMedGoogle Scholar
  53. 53.
    Orr AW, Helmke BP, Blackman BR, Schwartz MA. Mechanisms of mechanotransduction. Dev Cell. 2006;10:11–20.CrossRefPubMedGoogle Scholar
  54. 54.
    Chou J, Lin YC, Kim J, You L, Xu Z, He B, et al. Nasopharyngeal carcinoma—review of the molecular mechanisms of tumorigenesis. Head Neck. 2008;30:946–63.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Davis FM, Azimi I, Faville RA, Peters AA, Jalink K, Putney JJ, et al. Induction of epithelial-mesenchymal transition (emt) in breast cancer cells is calcium signal dependent. Oncogene. 2014;33:2307–16.CrossRefPubMedGoogle Scholar
  56. 56.
    Shi W, Bastianutto C, Li A, Perez-Ordonez B, Ng R, Chow KY, et al. Multiple dysregulated pathways in nasopharyngeal carcinoma revealed by gene expression profiling. Int J Cancer. 2006;119:2467–75.CrossRefPubMedGoogle Scholar
  57. 57.
    Krikelis D, Bobos M, Karayannopoulou G, Resiga L, Chrysafi S, Samantas E, et al. Expression profiling of 21 biomolecules in locally advanced nasopharyngeal carcinomas of Caucasian patients. BMC Clin Pathol. 2013;13:1.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Wu D, Chen L, Liao W, Ding Y, Zhang Q, Li Z, et al. Fascin1 expression predicts poor prognosis in patients with nasopharyngeal carcinoma and correlates with tumor invasion. Ann Oncol. 2010;21:589–96.CrossRefPubMedGoogle Scholar
  59. 59.
    Segawa Y, Oda Y, Yamamoto H, Shiratsuchi H, Hirakawa N, Komune S, et al. Close correlation between cxcr4 and vegf expression and their prognostic implications in nasopharyngeal carcinoma. Oncol Rep. 2009;21:1197–202.PubMedGoogle Scholar
  60. 60.
    Qian CN, Guo X, Cao B, Kort EJ, Lee CC, Chen J, et al. Met protein expression level correlates with survival in patients with late-stage nasopharyngeal carcinoma. Cancer Res. 2002;62:589–96.PubMedGoogle Scholar
  61. 61.
    Oudejans JJ, Harijadi H, Kummer JA, Tan IB, Bloemena E, Middeldorp JM, et al. High numbers of granzyme b/cd8-positive tumour-infiltrating lymphocytes in nasopharyngeal carcinoma biopsies predict rapid fatal outcome in patients treated with curative intent. J Pathol. 2002;198:468–75.CrossRefPubMedGoogle Scholar
  62. 62.
    Real PJ, Sierra A, De Juan A, Segovia JC, Lopez-Vega JM, Fernandez-Luna JL. Resistance to chemotherapy via stat3-dependent overexpression of bcl-2 in metastatic breast cancer cells. Oncogene. 2002;21:7611–8.CrossRefPubMedGoogle Scholar
  63. 63.
    Wang T, Niu G, Kortylewski M, Burdelya L, Shain K, Zhang S, et al. Regulation of the innate and adaptive immune responses by stat-3 signaling in tumor cells. Nat Med. 2004;10:48–54.CrossRefPubMedGoogle Scholar
  64. 64.
    Chen H, Hutt-Fletcher L, Cao L, Hayward SD. A positive autoregulatory loop of lmp1 expression and stat activation in epithelial cells latently infected with Epstein-Barr virus. J Virol. 2003;77:4139–48.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Yue P, Turkson J. Targeting stat3 in cancer: how successful are we? Expert Opin Investig Drugs. 2009;18:45–56.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Wang X, Crowe PJ, Goldstein D, Yang JL. Stat3 inhibition, a novel approach to enhancing targeted therapy in human cancers (review). Int J Oncol. 2012;41:1181–91.PubMedGoogle Scholar
  67. 67.
    Yu H, Jove R. The stats of cancer—new molecular targets come of age. Nat Rev Cancer. 2004;4:97–105.CrossRefPubMedGoogle Scholar
  68. 68.
    Frank DA. Stat3 as a central mediator of neoplastic cellular transformation. Cancer Lett. 2007;251:199–210.CrossRefPubMedGoogle Scholar
  69. 69.
    Buettner R, Mora LB, Jove R. Activated stat signaling in human tumors provides novel molecular targets for therapeutic intervention. Clin Cancer Res. 2002;8:945–54.PubMedGoogle Scholar
  70. 70.
    Li H, Liu A, Zhao Z, Xu Y, Lin J, Jou D, et al. Fragment-based drug design and drug repositioning using multiple ligand simultaneous docking (mlsd): identifying celecoxib and template compounds as novel inhibitors of signal transducer and activator of transcription 3 (stat3). J Med Chem. 2011;54:5592–6.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Liu Y, Liu A, Li H, Li C, Lin J. Celecoxib inhibits interleukin-6/interleukin-6 receptor-induced jak2/stat3 phosphorylation in human hepatocellular carcinoma cells. Cancer Prev Res (Phila). 2011;4:1296–305.CrossRefGoogle Scholar
  72. 72.
    Reed S, Li H, Li C, Lin J. Celecoxib inhibits stat3 phosphorylation and suppresses cell migration and colony forming ability in rhabdomyosarcoma cells. Biochem Biophys Res Commun. 2011;407:450–5.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  • Yi Qin
    • 1
    • 2
  • Zhi-Wei Liao
    • 3
  • Jing-Yan Luo
    • 4
  • Wen-Zhe Wu
    • 4
  • An-Shang Lu
    • 4
  • Pu-Xia Su
    • 4
  • Bing-Quan Lai
    • 4
  • Xiao-Xiao Wang
    • 5
  1. 1.Department of OrthopedicsZhuhai People’s HospitalZhuhaiChina
  2. 2.Department of Orthopedics, Sun Yat-sen Memorial HospitalSun Yat-sen UniversityGuangzhouChina
  3. 3.Department of Radiation OncologyCancer Center of Guangzhou Medical UniversityGuangzhouChina
  4. 4.Forevergen Biosciences CenterGuangzhouChina
  5. 5.Department of Medical Oncology, State Key Laboratory of Oncology in South China, and Collaborative Innovation Center for Cancer MedicineSun Yat-sen University Cancer CenterGuangzhouChina

Personalised recommendations