Tumor Biology

, Volume 37, Issue 2, pp 1515–1519 | Cite as

The role of microRNAs in the adrenocortical carcinomas

  • Xin Yu
  • Zheng Li


MicroRNAs (miRNAs) are a group of small, non-protein-coding RNAs that inhibit gene expressions through binding their 3′-UTR regions. Each miRNA can regulate a number of target genes and play crucial roles in a lot of biological processes including organogenesis, hematopoiesis, cell development, proliferation, and invasion. Deregulated expression of miRNAs has been found to be associated with initiation and development of tumors. Increasing evidences showed that miRNAs play a crucial role in adrenocortical carcinomas (ACCs). Aberrant miRNA expression may contribute to ACC carcinogenesis, and it can act as tumor-suppressive or oncogenic miRNAs. In this review, we reviewed the recent studies available on ACC-associated miRNAs. We try to summarize the contribution of miRNAs to the initiation and development of ACCs.


Adrenocortical carcinomas microRNAs MiRNAs MiR-7 



This work was supported by grants from the National Natural Science Foundation of China (NSFC) (Grant Number: 81401847).


  1. 1.
    Barreau O, Assie G, Wilmot-Roussel H, Ragazzon B, Baudry C, Perlemoine K, et al. Identification of a CpG island methylator phenotype in adrenocortical carcinomas. J Clin Endocrinol Metab. 2013;98:E174–184.CrossRefPubMedGoogle Scholar
  2. 2.
    Feinmesser M, Benbassat C, Meiri E, Benjamin H, Lebanony D, Lebenthal Y, et al. Specific microRNAs differentiate adrenocortical adenomas from carcinomas and correlate with Weiss histopathologic system. Appl Immunohistochem Mol Morphol. 2015;23:522–31.CrossRefPubMedGoogle Scholar
  3. 3.
    Flynt KA, Dillman JR, Davenport MS, Smith EA, Else T, Strouse PJ, et al. Pediatric adrenocortical neoplasms: can imaging reliably discriminate adenomas from carcinomas? Pediatr Radiol. 2015;45:1160–8.CrossRefPubMedGoogle Scholar
  4. 4.
    Hubertus J, Boxberger N, Redlich A, von Schweinitz D, Vorwerk P. Surgical aspects in the treatment of adrenocortical carcinomas in children: data of the GPOH-MET 97 trial. Klin Padiatr. 2012;224:143–7.CrossRefPubMedGoogle Scholar
  5. 5.
    Kassi E, Kaltsas G, Zografos G, Chrousos G. Current issues in the diagnosis and management of adrenocortical carcinomas; in De Groot LJ, Beck-Peccoz P, Chrousos G, Dungan K, Grossman A, Hershman JM, Koch C, McLachlan R, New M, Rebar R, Singer F, Vinik A, Weickert MO (eds): Endotext. South Dartmouth (MA), 2000.Google Scholar
  6. 6.
    Khan M, Caoili EM, Davenport MS, Poznanski A, Francis IR, Giordano T, et al. Ct imaging characteristics of oncocytic adrenal neoplasms (OANs): comparison with adrenocortical carcinomas. Abdom Imaging. 2014;39:86–91.CrossRefPubMedGoogle Scholar
  7. 7.
    Libe R, Borget I, Ronchi CL, Zaggia B, Kroiss M, Kerkhofs T, et al. Prognostic factors in stage III-IV adrenocortical carcinomas (ACC): an European Network for the Study of Adrenal Tumor (ENSAT) study. Ann Oncol. 2015;26:2119–25.CrossRefPubMedGoogle Scholar
  8. 8.
    Petersenn S, Richter PA, Broemel T, Ritter CO, Deutschbein T, Beil FU, et al. Computed tomography criteria for discrimination of adrenal adenomas and adrenocortical carcinomas: analysis of the German ACC registry. Eur J Endocrinol. 2015;172:415–22.CrossRefPubMedGoogle Scholar
  9. 9.
    Ye J, Qi Y, Wang W, Sun F, Wei Q, Su T, et al. Lower expression of ATM and gene deletion is more frequent in adrenocortical carcinomas than adrenocortical adenomas. Endocrine. 2012;41:479–86.CrossRefPubMedGoogle Scholar
  10. 10.
    Mondal SK, Dasgupta S, Jain P, Mandal PK, Sinha SK. Histopathological study of adrenocortical carcinoma with special reference to the Weiss system and TNM staging and the role of immunohistochemistry to differentiate it from renal cell carcinoma. J Cancer Res Ther. 2013;9:436–41.CrossRefPubMedGoogle Scholar
  11. 11.
    Papotti M, Libe R, Duregon E, Volante M, Bertherat J, Tissier F. The Weiss score and beyond—histopathology for adrenocortical carcinoma. Horm Cancer. 2011;2:333–40.CrossRefPubMedGoogle Scholar
  12. 12.
    Waldmann J, Patsalis N, Fendrich V, Langer P, Saeger W, Chaloupka B, et al. Clinical impact of TP53 alterations in adrenocortical carcinomas. Langenbecks Arch Surg. 2012;397:209–16.CrossRefPubMedGoogle Scholar
  13. 13.
    Ronchi CL, Sbiera S, Altieri B, Steinhauer S, Wild V, Bekteshi M, et al. Notch1 pathway in adrenocortical carcinomas: correlations with clinical outcome. Endocrine-Related Cancer. 2015;22:531–43.CrossRefPubMedGoogle Scholar
  14. 14.
    Yu X, Li Z, Chan MT, Wu WK. MicroRNA deregulation in keloids: an opportunity for clinical intervention? Cell Prolif. 2015;48:626–30.CrossRefPubMedGoogle Scholar
  15. 15.
    Yu X, Li Z. The role of miRNAs in cutaneous squamous cell carcinoma. J Cell Mol Med. 2015.Google Scholar
  16. 16.
    Li Z, Yu X, Shen J. The role of miRNAs in the pheochromocytomas. Tumour Biol J Int Soc Oncodev Biol Med. 2015.Google Scholar
  17. 17.
    Yu X, Li Z. MicroRNA expression and its implications for diagnosis and therapy of tongue squamous cell carcinoma. J Cell Mol Med. 2015.Google Scholar
  18. 18.
    Li Z, Yu X, Shen J, Jiang Y. MicroRNA dysregulation in uveal melanoma: a new player enters the game. Oncotarget. 2015;6:4562–8.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Li Z, Yu X, Shen J, Liu Y, Chan MT, Wu WK. MicroRNA dysregulation in rhabdomyosarcoma: a new player enters the game. Cell Prolif. 2015;48:511–6.CrossRefPubMedGoogle Scholar
  20. 20.
    Yu X, Li Z, Liu J. MiRNAs in primary cutaneous lymphomas. Cell Prolif. 2015;48:271–7.CrossRefPubMedGoogle Scholar
  21. 21.
    Yu X, Li Z. The role of microRNAs expression in laryngeal cancer. Oncotarget. 2015;6:23297–305.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Zhang C, Chi YL, Wang PY, Wang YQ, Zhang YX, Deng J, et al. miR-511 and miR-1297 inhibit human lung adenocarcinoma cell proliferation by targeting oncogene TRIB2. PLoS One. 2012;7:e46090.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Li Z, Yu X, Wang Y, Shen J, Wu WK, Liang J, et al. By downregulating tiam1 expression, microRNA-329 suppresses gastric cancer invasion and growth. Oncotarget. 2015;6:17559–69.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Li Z, Lei H, Luo M, Wang Y, Dong L, Ma Y, et al. DNA methylation downregulated mir-10b acts as a tumor suppressor in gastric cancer. Gastric Cancer. 2015;18:43–54.CrossRefPubMedGoogle Scholar
  25. 25.
    Furuta M, Kozaki K, Tanimoto K, Tanaka S, Arii S, Shimamura T, et al. The tumor-suppressive miR-497-195 cluster targets multiple cell-cycle regulators in hepatocellular carcinoma. PLoS One. 2013;8:e60155.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Yu X, Li Z, Chen G, Wu WK. MicroRNA-10b induces vascular muscle cell proliferation through Akt pathway by targeting TIP30. Curr Vasc Pharmacol. 2015;13:679–86.CrossRefPubMedGoogle Scholar
  27. 27.
    Yu X, Li Z, Shen J, Wu WK, Liang J, Weng X, et al. MicroRNA-10b promotes nucleus pulposus cell proliferation through RhoC-Akt pathway by targeting HOXD10 in intervetebral disc degeneration. PLoS One. 2013;8:e83080.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Yu X, Li Z. MicroRNAs regulate vascular smooth muscle cell functions in atherosclerosis (review). Int J Mol Med. 2014;34:923–33.PubMedGoogle Scholar
  29. 29.
    Tombol Z, Szabo PM, Molnar V, Wiener Z, Tolgyesi G, Horanyi J, et al. Integrative molecular bioinformatics study of human adrenocortical tumors: microRNA, tissue-specific target prediction, and pathway analysis. Endocrine-Related Cancer. 2009;16:895–906.CrossRefPubMedGoogle Scholar
  30. 30.
    Bimpaki EI, Iliopoulos D, Moraitis A, Stratakis CA. MicroRNA signature in massive macronodular adrenocortical disease and implications for adrenocortical tumourigenesis. Clin Endocrinol. 2010;72:744–51.CrossRefGoogle Scholar
  31. 31.
    Ozata DM, Caramuta S, Velazquez-Fernandez D, Akcakaya P, Xie H, Hoog A, et al. The role of microRNA deregulation in the pathogenesis of adrenocortical carcinoma. Endocrine-Related Cancer. 2011;18:643–55.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Patterson EE, Holloway AK, Weng J, Fojo T, Kebebew E. MicroRNA profiling of adrenocortical tumors reveals miR-483 as a marker of malignancy. Cancer. 2011;117:1630–9.CrossRefPubMedGoogle Scholar
  33. 33.
    Szabo DR, Luconi M, Szabo PM, Toth M, Szucs N, Horanyi J, et al. Analysis of circulating microRNAs in adrenocortical tumors. Lab Invest. 2014;94:331–9.CrossRefPubMedGoogle Scholar
  34. 34.
    Schmitz KJ, Helwig J, Bertram S, Sheu SY, Suttorp AC, Seggewiss J, et al. Differential expression of microRNA-675, microRNA-139-3p and microRNA-335 in benign and malignant adrenocortical tumours. J Clin Pathol. 2011;64:529–35.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Duregon E, Rapa I, Votta A, Giorcelli J, Daffara F, Terzolo M, et al. MicroRNA expression patterns in adrenocortical carcinoma variants and clinical pathologic correlations. Hum Pathol. 2014;45:1555–62.CrossRefPubMedGoogle Scholar
  36. 36.
    Patel D, Boufraqech M, Jain M, Zhang L, He M, Gesuwan K, et al. MiR-34a and miR-483-5p are candidate serum biomarkers for adrenocortical tumors. Surgery. 2013;154:1224–8. discussion 1229.CrossRefPubMedGoogle Scholar
  37. 37.
    Glover AR, Zhao JT, Gill AJ, Weiss J, Mugridge N, Kim E, Feeney AL, Ip JC, Reid G, Clarke S, Soon PS, Robinson BG, Brahmbhatt H, MacDiarmid JA, Sidhu SB. MicroRNA-7 as a tumor suppressor and novel therapeutic for adrenocortical carcinoma. Oncotarget. 2015.Google Scholar
  38. 38.
    Jain M, Zhang L, Boufraqech M, Liu-Chittenden Y, Bussey K, Demeure MJ, et al. Znf367 inhibits cancer progression and is targeted by miR-195. PLoS One. 2014;9:e101423.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Wang C, Sun Y, Wu H, Zhao D, Chen J. Distinguishing adrenal cortical carcinomas and adenomas: a study of clinicopathological features and biomarkers. Histopathology. 2014;64:567–76.CrossRefPubMedGoogle Scholar
  40. 40.
    Espiard S, Bertherat J. The genetics of adrenocortical tumors. Endocrinol Metab Clin N Am. 2015;44:311–34.CrossRefGoogle Scholar
  41. 41.
    Sasano H, Satoh F, Nakamura Y. Roles of the pathologist in evaluating surrogate markers for medical therapy in adrenocortical carcinoma. Endocr Pathol. 2014;25:366–70.CrossRefPubMedGoogle Scholar
  42. 42.
    Chabre O, Libe R, Assie G, Barreau O, Bertherat J, Bertagna X, et al. Serum miR-483-5p and miR-195 are predictive of recurrence risk in adrenocortical cancer patients. Endocrine-Related Cancer. 2013;20:579–94.PubMedGoogle Scholar
  43. 43.
    de Sousa GR, Ribeiro TC, Faria AM, Mariani BM, Lerario AM, Zerbini MC, et al. Low DICER1 expression is associated with poor clinical outcome in adrenocortical carcinoma. Oncotarget. 2015;6:22724–33.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Yu X, Li Z. The role of TARBP2 in the development and progression of cancers. Tumour Biol J Int Soc Oncodev Biol Med. 2015Google Scholar
  45. 45.
    Caramuta S, Lee L, Ozata DM, Akcakaya P, Xie H, Hoog A, et al. Clinical and functional impact of TARBP2 over-expression in adrenocortical carcinoma. Endocrine-Related Cancer. 2013;20:551–64.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  1. 1.Department of DermatologyPeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
  2. 2.Department of Orthopaedic SurgeryPeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina

Personalised recommendations