Tumor Biology

, Volume 37, Issue 6, pp 7525–7534 | Cite as

RIP1 and RIP3 complex regulates radiation-induced programmed necrosis in glioblastoma

  • Arabinda Das
  • Daniel G. McDonald
  • Yaenette N. Dixon-Mah
  • Dustin J. Jacqmin
  • Vikram N. Samant
  • William A. VandergriftIII
  • Scott M. Lindhorst
  • David Cachia
  • Abhay K. Varma
  • Kenneth N. Vanek
  • Naren L. Banik
  • Joseph M. JenretteIII
  • Jeffery J. Raizer
  • Pierre Giglio
  • Sunil J. Patel
Original Article

Abstract

Radiation-induced necrosis (RN) is a relatively common side effect of radiation therapy for glioblastoma. However, the molecular mechanisms involved and the ways RN mechanisms differ from regulated cell death (apoptosis) are not well understood. Here, we compare the molecular mechanism of cell death (apoptosis or necrosis) of C6 glioma cells in both in vitro and in vivo (C6 othotopically allograft) models in response to low and high doses of X-ray radiation. Lower radiation doses were used to induce apoptosis, while high-dose levels were chosen to induce radiation necrosis. Our results demonstrate that active caspase-8 in this complex I induces apoptosis in response to low-dose radiation and inhibits necrosis by cleaving RIP1 and RI. When activation of caspase-8 was reduced at high doses of X-ray radiation, the RIP1/RIP3 necrosome complex II is formed. These complexes induce necrosis through the caspase-3-independent pathway mediated by calpain, cathepsin B/D, and apoptosis-inducing factor (AIF). AIF has a dual role in apoptosis and necrosis. At high doses, AIF promotes chromatinolysis and necrosis by interacting with histone H2AX. In addition, NF-κB, STAT-3, and HIF-1 play a crucial role in radiation-induced inflammatory responses embedded in a complex inflammatory network. Analysis of inflammatory markers in matched plasma and cerebrospinal fluid (CSF) isolated from in vivo specimens demonstrated the upregulation of chemokines and cytokines during the necrosis phase. Using RIP1/RIP3 kinase specific inhibitors (Nec-1, GSK′872), we also establish that the RIP1-RIP3 complex regulates programmed necrosis after either high-dose radiation or TNF-α-induced necrosis requires RIP1 and RIP3 kinases. Overall, our data shed new light on the relationship between RIP1/RIP3-mediated programmed necrosis and AIF-mediated caspase-independent programmed necrosis in glioblastoma

Keywords

Apoptosis Glioblastoma Radiation necrosis RIP 

Notes

Acknowledgments

This investigation was supported by the MUSC Brain Tumor Research Fund and Department of Neurosurgery (MUSC). Alyssa Pierce assisted with revision of the final manuscript. We also appreciate the essential help of Philip Lee.

Compliance with ethical standards

Conflicts of interest

None

References

  1. 1.
    Mittal S, Pradhan S, Srivastava T. Recent advances in targeted therapy for glioblastoma. Expert Rev Neurother. 2015;15(8):935–46.CrossRefPubMedGoogle Scholar
  2. 2.
    Barani IJ, Larson DA. Radiation therapy of glioblastoma. Cancer Treat Res. 2015;163:49–73.CrossRefPubMedGoogle Scholar
  3. 3.
    Fogh S, Wahl M, Anwar M, Haas-Kogan D, Clarke JL, Sneed PK. Standardization and quality assurance of radiation therapy volumes for adults with high-grade gliomas. Semin Radiat Oncol. 2014;24(4):259–64.CrossRefPubMedGoogle Scholar
  4. 4.
    Eisele SC, Dietrich J. Cerebral radiation necrosis: diagnostic challenge and clinical management. Rev Neurol. 2015;61(5):225–32.PubMedGoogle Scholar
  5. 5.
    Miyatake S, Nonoguchi N, Furuse M, Yoritsune E, Miyata T, Kawabata S, et al. Pathophysiology, diagnosis, and treatment of radiation necrosis in the brain. Neurol Med Chir (Tokyo). 2015;55 Suppl 1:50–9.CrossRefGoogle Scholar
  6. 6.
    Parvez K, Parvez A, Zadeh G. The diagnosis and treatment of pseudoprogression, radiation necrosis and brain tumor recurrence. Int J Mol Sci. 2014;15(7):11832–46.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Lawrence YR, Li XA, el Naqa I, Hahn CA, Marks LB, Merchant TE, et al. Radiation dose-volume effects in the brain. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S20–7.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Saad S, Wang TJ. Neurocognitive deficits after radiation therapy for brain malignancies. Am J Clin Oncol. 2014.Google Scholar
  9. 9.
    Takeuchi J, Hanakita J, Abe M, Handa H. Brain necrosis after repeated radiotherapy. Surg Neurol. 1976;5(2):89–93.PubMedGoogle Scholar
  10. 10.
    Mikhael MA. Radiation necrosis of the brain: correlation between computed tomography, pathology, and dose distribution. J Comput Assist Tomogr. 1978;2(1):71–80.CrossRefPubMedGoogle Scholar
  11. 11.
    Fink J, Born D, Chamberlain MC. Radiation necrosis: relevance with respect to treatment of primary and secondary brain tumors. Curr Neurol Neurosci Rep. 2012;12(3):276–85.CrossRefPubMedGoogle Scholar
  12. 12.
    Yoritsune E, Furuse M, Kuwabara H, Miyata T, Nonoguchi N, Kawabata S, et al. Inflammation as well as angiogenesis may participate in the pathophysiology of brain radiation necrosis. J Radiat Res. 2014;55(4):803–11.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Leon LJ, Pasupuleti N, Gorin F, Carraway 3rd KL. A cell-permeant amiloride derivative induces caspase-independent, AIF-mediated programmed necrotic death of breast cancer cells. PLoS One. 2013;8(4), e63038.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Delavallée L, Cabon L, Galán-Malo P, Lorenzo HK, Susin SA. AIF-mediated caspase-independent necroptosis: a new chance for targeted therapeutics. IUBMB Life. 2011;63(4):221–32.CrossRefPubMedGoogle Scholar
  15. 15.
    Baritaud M, Boujrad H, Lorenzo HK, Krantic S, Susin SA. Histone H2AX: the missing link in AIF-mediated caspase-independent programmed necrosis. Cell Cycle. 2010;9(16):3166–73.CrossRefPubMedGoogle Scholar
  16. 16.
    Park EJ, Min KJ, Lee TJ, Yoo YH, Kim YS, Kwon TK. β-Lapachone induces programmed necrosis through the RIP1-PARP-AIF-dependent pathway in human hepatocellular carcinoma SK-Hep1 cells. Cell Death Dis. 2014;5, e1230.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Mandal P, Berger SB, Pillay S, Moriwaki K, Huang C, Guo H, et al. RIP3 induces apoptosis independent of pronecrotic kinase activity. Mol Cell. 2014;56(4):481–95.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Moriwaki K, Chan FK. RIP3: a molecular switch for necrosis and inflammation. Genes Dev. 2013;27(15):1640–9.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Moriwaki K, Chan FK. Necrosis-dependent and independent signaling of the RIP kinases in inflammation. Cytokine Growth Factor Rev. 2014;25(2):167–74.CrossRefPubMedGoogle Scholar
  20. 20.
    Linkermann A, Bräsen JH, De Zen F, Weinlich R, Schwendener RA, Green DR, et al. Dichotomy between RIP1- and RIP3-mediated necroptosis in tumor necrosis factor-α-induced shock. Mol Med. 2012;18:577–86.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Kaiser WJ, Upton JW, Long AB, Livingston-Rosanoff D, Daley-Bauer LP, Hakem R, et al. RIP3 mediates the embryonic lethality ofcaspase-8-deficient mice. Nature. 2011;471(7338):368–72.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Das A, Miller R, Lee P, Holden CA, Lindhorst SM, Jaboin J, Vandergrift WA 3rd,Banik NL, Giglio P, Varma AK, Raizer JJ, Patel SJ. A novel component from citrus,ginger, and mushroom family exhibits antitumor activity on human meningioma cellsthrough suppressing the Wnt/β-catenin signaling pathway. Tumour Biol. 2015.Google Scholar
  23. 23.
    Wallace 4th GC, Haar CP, Vandergrift 3rd WA, Giglio P, Dixon-Mah YN, Varma AK, et al. Multi-targeted DATS prevents tumor progression and promotes apoptosis in ectopic glioblastoma xenografts in SCID mice via HDAC inhibition. J Neuro-Oncol. 2013;114(1):43–50.CrossRefGoogle Scholar
  24. 24.
    Fujikawa DG. The role of excitotoxic programmed necrosis in acute brain injury. Comput Struct Biotechnol J. 2015;13:212–21.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    McCall K. Genetic control of necrosis—another type of programmed cell death. Curr Opin Cell Biol. 2010;22(6):882–8.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Kelly GL, Strasser A. The essential role of evasion from cell death in cancer. Adv Cancer Res. 2011;111:39–96.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Francis RJ, Kotecha S, Hallett MB. Ca2+ activation of cytosolic calpain induces the transition from apoptosis to necrosis in neutrophils with externalized phosphatidylserine. J Leukoc Biol. 2013;93(1):95–100.CrossRefPubMedGoogle Scholar
  28. 28.
    Bano D, Young KW, Guerin CJ, Lefeuvre R, Rothwell NJ, Naldini L, et al. Cleavage of the plasma membrane Na+/Ca2+ exchanger in excitotoxicity. Cell. 2005;120:275–85.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Arabinda Das
    • 1
  • Daniel G. McDonald
    • 2
  • Yaenette N. Dixon-Mah
    • 1
  • Dustin J. Jacqmin
    • 2
  • Vikram N. Samant
    • 1
  • William A. VandergriftIII
    • 1
  • Scott M. Lindhorst
    • 1
  • David Cachia
    • 1
  • Abhay K. Varma
    • 1
  • Kenneth N. Vanek
    • 2
  • Naren L. Banik
    • 1
    • 3
  • Joseph M. JenretteIII
    • 2
  • Jeffery J. Raizer
    • 5
  • Pierre Giglio
    • 1
    • 4
  • Sunil J. Patel
    • 1
  1. 1.Department of Neurosurgery (Divisions of Neuro-oncology) and MUSC Brain and Spine Tumor Program CSB 310Medical University of South CarolinaCharlestonUSA
  2. 2.Department of Radiation OncologyMedical University of South CarolinaCharlestonUSA
  3. 3.Ralph H. Johnson VA Medical CenterCharlestonUSA
  4. 4.Department of Neurological SurgeryOhio State University Wexner Medical CollegeColumbusUSA
  5. 5.Department of Neurology and Northwestern Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer CenterNorthwestern University Feinberg School of MedicineChicagoUSA

Personalised recommendations