Skip to main content
Log in

Upregulation of connexin43 contributes to PX-12-induced oxidative cell death

  • Original Article
  • Published:
Tumor Biology

Abstract

Thioredoxin (Trx) is a small redox protein that underlies aggressive tumor growth and resistance to chemotherapy. Inhibition of Trx with the chemical inhibitor PX-12 suppresses tumor growth and induces cell apoptosis. Currently, the mechanism underlying the therapeutic actions of PX-12 and the molecules influencing cell susceptibility to PX-12 are incompletely understood. Given that connexin43 (Cx43), a tumor suppressor, regulates tumor cell susceptibility to chemotherapy, we examined the possible involvement of Cx43 in PX-12-induced cell death. Exposure of cells to PX-12 led to a loss of cell viability, which was associated with the activation of oxidative sensitive c-Jun N-terminal kinase (JNK). Inhibition of JNK or supplement of cells with anti-oxidants prevented the cell-killing action of PX-12. The forced expression of Cx43 in normal and tumor cells increased cell sensitivity to PX-12-induced JNK activation and cell death. In contrast, the downregulation of Cx43 with siRNA or the suppression of gap junctions with chemical inhibitors attenuated JNK activation and enhanced cell resistance to PX-12. Further analysis revealed that PX-12 at low concentrations induced a JNK-dependent elevation in the Cx43 protein, which was also preventable by supplementing the cells with anti-oxidants. Our results thus indicate that Cx43 is a determinant in the regulation of cell susceptibility to PX-12 and that the upregulation of Cx43 may be an additional mechanism by which PX-12 exerts its anti-tumor actions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

NAC:

N-Acetyl-1-cysteine

CA:

Carbenoxolone

Cx:

Connexin

EGFP:

Enhanced green fluorescent protein

GJ:

Gap junction

GSH:

Glutathione reduced ethyl ester

α-GA:

α-Glycyrrhetinic acid

LDH:

Lactate dehydrogenase

PI:

Propidium iodide

ROS:

Reactive oxygen species

Trx:

Thioredoxin

WT:

Wild type

References

  1. Penney RB, Roy D. Thioredoxin-mediated redox regulation of resistance to endocrine therapy in breast cancer. Biochim Biophys Acta. 1836;2013:60–79.

    Google Scholar 

  2. Montero AJ, Jassem J. Cellular redox pathways as a therapeutic target in the treatment of cancer. Drugs. 2011;71:1385–96.

    Article  CAS  PubMed  Google Scholar 

  3. Mahmood DF, Abderrazak A, El Hadri K, Simmet T, Rouis M. The thioredoxin system as a therapeutic target in human health and disease. Antioxid Redox Signal. 2013;19:1266–303.

    Article  CAS  PubMed  Google Scholar 

  4. Li C, Thompson MA, Tamayo AT, Zuo Z, Lee J, Vega F, et al. Over-expression of thioredoxin-1 mediates growth, survival, and chemoresistance and is a druggable target in diffuse large b-cell lymphoma. Oncotarget. 2012;3:314–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lim JY, Yoon SO, Hong SW, Kim JW, Choi SH, Cho JY. Thioredoxin and thioredoxin-interacting protein as prognostic markers for gastric cancer recurrence. World J Gastroenterol. 2012;18:5581–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lincoln DT, Ali Emadi EM, Tonissen KF, Clarke FM. The thioredoxin-thioredoxin reductase system: over-expression in human cancer. Anticancer Res. 2003;23:2425–33.

    CAS  PubMed  Google Scholar 

  7. Kirkpatrick DL, Kuperus M, Dowdeswell M, Potier N, Donald LJ, Kunkel M, et al. Mechanisms of inhibition of the thioredoxin growth factor system by antitumor 2-imidazolyl disulfides. Biochem Pharmacol. 1998;55:987–94.

    Article  CAS  PubMed  Google Scholar 

  8. Ramanathan RK, Stephenson JJ, Weiss GJ, Pestano LA, Lowe A, Hiscox A, et al. A phase I trial of px-12, a small-molecule inhibitor of thioredoxin-1, administered as a 72-hour infusion every 21 days in patients with advanced cancers refractory to standard therapy. Investig New Drugs. 2012;30:1591–6.

    Article  CAS  Google Scholar 

  9. Ramanathan RK, Kirkpatrick DL, Belani CP, Friedland D, Green SB, Chow HH, et al. A phase i pharmacokinetic and pharmacodynamic study of px-12, a novel inhibitor of thioredoxin-1, in patients with advanced solid tumors. Clin Cancer Res. 2007;13:2109–14.

    Article  CAS  PubMed  Google Scholar 

  10. Gao K, Chi Y, Sun W, Takeda M, Yao J. 5′-AMP-activated protein kinase attenuates adriamycin-induced oxidative podocyte injury through thioredoxin-mediated suppression of the apoptosis signal-regulating kinase 1-p38 signaling pathway. Mol Pharmacol. 2014;85:460–71.

    Article  CAS  PubMed  Google Scholar 

  11. Trosko JE, Chang CC, Wilson MR, Upham B, Hayashi T, Wade M. Gap junctions and the regulation of cellular functions of stem cells during development and differentiation. Methods. 2000;20:245–64.

    Article  CAS  PubMed  Google Scholar 

  12. Yao J, Oite T, Kitamura M. Gap junctional intercellular communication in the juxtaglomerular apparatus. Am J Physiol Renal Physiol. 2009;296:F939–46.

    Article  CAS  PubMed  Google Scholar 

  13. Sirnes S, Bruun J, Kolberg M, Kjenseth A, Lind GE, Svindland A, et al. Connexin43 acts as a colorectal cancer tumor suppressor and predicts disease outcome. Int J Cancer. 2012;131:570–81.

    Article  CAS  PubMed  Google Scholar 

  14. Tang B, Peng ZH, Yu PW, Yu G, Qian F. Expression and significance of cx43 and e-cadherin in gastric cancer and metastatic lymph nodes. Med Oncol. 2011;28:502–8.

    Article  CAS  PubMed  Google Scholar 

  15. Talhouk RS, Fares MB, Rahme GJ, Hariri HH, Rayess T, Dbouk HA, et al. Context dependent reversion of tumor phenotype by connexin-43 expression in mda-mb231 cells and mcf-7 cells: role of beta-catenin/connexin43 association. Exp Cell Res. 2013;319:3065–80.

    Article  CAS  PubMed  Google Scholar 

  16. Lamiche C, Clarhaut J, Strale PO, Crespin S, Pedretti N, Bernard FX, et al. The gap junction protein cx43 is involved in the bone-targeted metastatic behaviour of human prostate cancer cells. Clin Exp Metastasis. 2012;29:111–22.

    Article  CAS  PubMed  Google Scholar 

  17. Yan Q, Gao K, Chi Y, Li K, Zhu Y, Wan Y, et al. NADPH oxidase-mediated upregulation of connexin43 contributes to podocyte injury. Free Radic Biol Med. 2012;53:1286–97.

    Article  CAS  PubMed  Google Scholar 

  18. Li K, Chi Y, Gao K, Yan Q, Matsue H, Takeda M, et al. Connexin43 hemichannel-mediated regulation of connexin43. PLoS One. 2013;8:e58057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fang X, Huang T, Zhu Y, Yan Q, Chi Y, Jiang JX, et al. Connexin43 hemichannels contribute to cadmium-induced oxidative stress and cell injury. Antioxid Redox Signal. 2011;14:2427–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. You BR, Shin HR, Park WH. Px-12 inhibits the growth of a549 lung cancer cells via g2/m phase arrest and ROS-dependent apoptosis. Int J Oncol. 2014;44:301–8.

    CAS  PubMed  Google Scholar 

  21. You BR, Shin HR, Han BR, Park WH. Px-12 induces apoptosis in calu-6 cells in an oxidative stress-dependent manner. Tumour Biol. 2015;36(3):2087–95.

    Article  CAS  PubMed  Google Scholar 

  22. Yao J, Huang T, Fang X, Chi Y, Zhu Y, Wan Y, et al. Disruption of gap junctions attenuates aminoglycoside-elicited renal tubular cell injury. Br J Pharmacol. 2010;160:2055–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Krutovskikh VA, Yamasaki H, Tsuda H, Asamoto M. Inhibition of intrinsic gap-junction intercellular communication and enhancement of tumorigenicity of the rat bladder carcinoma cell line bc31 by a dominant-negative connexin 43 mutant. Mol Carcinog. 1998;23:254–61.

    Article  CAS  PubMed  Google Scholar 

  24. Oyamada Y, Zhou W, Oyamada H, Takamatsu T, Oyamada M. Dominant-negative connexin43-EGFP inhibits calcium-transient synchronization of primary neonatal rat cardiomyocytes. Exp Cell Res. 2002;273:85–94.

    Article  CAS  PubMed  Google Scholar 

  25. Huang T, Zhu Y, Fang X, Chi Y, Kitamura M, Yao J. Gap junctions sensitize cancer cells to proteasome inhibitor mg132-induced apoptosis. Cancer Sci. 2010;101:713–21.

    Article  CAS  PubMed  Google Scholar 

  26. Watanabe R, Nakamura H, Masutani H, Yodoi J. Anti-oxidative, anti-cancer and anti-inflammatory actions by thioredoxin 1 and thioredoxin-binding protein-2. Pharmacol Ther. 2010;127:261–70.

    Article  CAS  PubMed  Google Scholar 

  27. Chi Y, Gao K, Li K, Nakajima S, Kira S, Takeda M, et al. Purinergic control of AMPK activation by ATP released through connexin 43 hemichannels—pivotal roles in hemichannel-mediated cell injury. J Cell Sci. 2014;127:1487–99.

    Article  CAS  PubMed  Google Scholar 

  28. Retamal MA, Schalper KA, Shoji KF, Bennett MV, Saez JC. Opening of connexin 43 hemichannels is increased by lowering intracellular redox potential. Proc Natl Acad Sci U S A. 2007;104:8322–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Baker AF, Dragovich T, Tate WR, Ramanathan RK, Roe D, Hsu CH, et al. The antitumor thioredoxin-1 inhibitor px-12 (1-methylpropyl 2-imidazolyl disulfide) decreases thioredoxin-1 and VEGF levels in cancer patient plasma. J Lab Clin Med. 2006;147:83–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kim YH, Coon A, Baker AF, Powis G. Antitumor agent PX-12 inhibits HIF-1alpha protein levels through an NRF2/PMF-1-mediated increase in spermidine/spermine acetyl transferase. Cancer Chemother Pharmacol. 2011;68:405–13.

    Article  CAS  PubMed  Google Scholar 

  31. Sin WC, Crespin S, Mesnil M. Opposing roles of connexin43 in glioma progression. Biochim Biophys Acta. 1818;2012:2058–67.

    Google Scholar 

  32. Kandouz M, Batist G. Gap junctions and connexins as therapeutic targets in cancer. Expert Opin Ther Targets. 2010;14:681–92.

    Article  CAS  PubMed  Google Scholar 

  33. Yang L, Wu D, Wang X, Cederbaum AI. Depletion of cytosolic or mitochondrial thioredoxin increases CYP2E1-induced oxidative stress via an ASK-1-JNK1 pathway in HEPG2 cells. Free Radic Biol Med. 2011;51:185–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lin JH, Weigel H, Cotrina ML, Liu S, Bueno E, Hansen AJ, et al. Gap-junction-mediated propagation and amplification of cell injury. Nature Neurosci. 1998;1:494–500.

    Article  CAS  PubMed  Google Scholar 

  35. Krutovskikh VA, Piccoli C, Yamasaki H. Gap junction intercellular communication propagates cell death in cancerous cells. Oncogene. 2002;21:1989–99.

    Article  CAS  PubMed  Google Scholar 

  36. Azzam EI, de Toledo SM, Little JB. Direct evidence for the participation of gap junction-mediated intercellular communication in the transmission of damage signals from alpha-particle irradiated to nonirradiated cells. Proc Natl Acad Sci U S A. 2001;98:473–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Autsavapromporn N, de Toledo SM, Little JB, Jay-Gerin JP, Harris AL, Azzam EI. The role of gap junction communication and oxidative stress in the propagation of toxic effects among high-dose alpha-particle-irradiated human cells. Radiat Res. 2011;175:347–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Frank DK, Szymkowiak B, Josifovska‐Chopra O, Nakashima T, Kinnally KW. Single‐cell microinjection of cytochrome c can result in gap junction-mediated apoptotic cell death of bystander cells in head and neck cancer. Head Neck. 2005;27:794–800.

    Article  PubMed  Google Scholar 

  39. Bruzzone S, Guida L, Zocchi E, Franco L, De Flora A. Connexin 43 hemi channels mediate CA2+-regulated transmembrane NAD+ fluxes in intact cells. FASEB J. 2001;15:10–2.

    CAS  PubMed  Google Scholar 

  40. Gao K, Chi Y, Zhang X, Zhang H, Li G, Sun W, et al. A novel TXNIP-based mechanism for CX43-mediated regulation of oxidative drug injury. J Cell Mol Med. 2015;19:2469–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Herrero-Gonzalez S, Gangoso E, Giaume C, Naus CC, Medina JM, Tabernero A. Connexin43 inhibits the oncogenic activity of c-src in c6 glioma cells. Oncogene. 2010;29:5712–23.

    Article  CAS  PubMed  Google Scholar 

  42. Gangoso E, Thirant C, Chneiweiss H, Medina JM, Tabernero A. A cell-penetrating peptide based on the interaction between c-src and connexin43 reverses glioma stem cell phenotype. Cell Death Dis. 2014;5:e1023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sun Y, St Clair DK, Xu Y, Crooks PA, St Clair WH. A NADPH oxidase-dependent redox signaling pathway mediates the selective radiosensitization effect of parthenolide in prostate cancer cells. Cancer Res. 2010;70:2880–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shan WH, Zhong WX, Zhao R, Oberley TD. Thioredoxin 1 as a subcellular biomarker of redox imbalance in human prostate cancer progression. Free Radical Biol Med. 2010;49:2078–87.

    Article  CAS  Google Scholar 

  45. Xu WS, Ngo L, Perez G, Dokmanovic M, Marks PA. Intrinsic apoptotic and thioredoxin pathways in human prostate cancer cell response to histone deacetylase inhibitor. Proc Natl Acad Sci U S A. 2006;103:15540–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shishido SN, Nguyen TA. Gap junction enhancer increases efficacy of cisplatin to attenuate mammary tumor growth. PLoS One. 2012;7:e44963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mancuso M, Pasquali E, Leonardi S, Rebessi S, Tanori M, Giardullo P, et al. Role of connexin43 and ATP in long-range bystander radiation damage and oncogenesis in vivo. Oncogene. 2011;30:4601–8.

    Article  CAS  PubMed  Google Scholar 

  48. Sato T, Neschadim A, Lavie A, Yanagisawa T, Medin JA. The engineered thymidylate kinase (tmpk)/azt enzyme-prodrug axis offers efficient bystander cell killing for suicide gene therapy of cancer. PLoS One. 2013;8:e78711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology, Japan (to 26461219 to J.Y.) and by a grant from the National Natural Science Foundation of China (Grant 81302918 to K.G.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Yao.

Ethics declarations

Conflicts of interest

None

Additional information

Gang Li and Kun Gao contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Gao, K., Chi, Y. et al. Upregulation of connexin43 contributes to PX-12-induced oxidative cell death. Tumor Biol. 37, 7535–7546 (2016). https://doi.org/10.1007/s13277-015-4620-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-4620-7

Keywords

Navigation