Skip to main content

Advertisement

Log in

Circulating epigenetic biomarkers in melanoma

  • Review
  • Published:
Tumor Biology

Abstract

Recent researches have shed new light on the importance of epigenetic alterations, including promoter hypermethylation and microRNA dysregulation, in the initiation and progression of melanoma. The clinical utilization of circulating epigenetic markers in melanoma has also been investigated. In this review, we explored the literature and summarized the latest progress in the discovery of circulating epigenetic markers, namely methylated DNA and microRNAs, for non-invasive diagnosis of melanoma, as well as their measurability and predictability. We also discussed the utility of these epigenetic markers as novel prognostic and predictive markers and their association with melanoma clinical phenotypes, including recurrence and patients’ survival. Large-cohort validations are warranted to maximize the clinical utilization of these markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Levy C, Khaled M, Iliopoulos D, Janas MM, Schubert S, Pinner S, et al. Intronic mir-211 assumes the tumor suppressive function of its host gene in melanoma. Mol Cell. 2010;40:841–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Margue C, Philippidou D, Reinsbach SE, Schmitt M, Behrmann I, Kreis S. New target genes of MITF-induced microRNA-211 contribute to melanoma cell invasion. PLoS One. 2013;8:e73473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sari Aslani F, Geramizadeh B, Dehghanian AR. Comparison of c-Kit expression between primary and metastatic melanoma of skin and mucosa. Med J Islam Republic Iran. 2015;29:203.

    Google Scholar 

  4. Walesch SK, Richter AM, Helmbold P, Dammann RH. Claudin11 promoter hypermethylation is frequent in malignant melanoma of the skin, but uncommon in nevus cell nevi. Cancer. 2015;7:1233–43.

    Article  Google Scholar 

  5. Watts JM, Kishtagari A, Hsu M, Lacouture ME, Postow MA, Park JH, et al. Melanoma and non-melanoma skin cancers in hairy cell leukaemia: a surveillance, epidemiology and end results population analysis and the 30-year experience at Memorial Sloan Kettering Cancer Center. Br J Haematol. 2015;171:84–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Boniol M, Autier P, Gandini S. Melanoma mortality following skin cancer screening in Germany. BMJ open. 2015;5:e008158.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Little EG, Eide MJ. Update on the current state of melanoma incidence. Dermatol Clin. 2012;30:355–61.

    Article  CAS  PubMed  Google Scholar 

  8. Brenner H. Mortality from malignant melanoma in an era of nationwide skin cancer screening. Dtsch Arztebl Int. 2015;112:627–8.

    PubMed  PubMed Central  Google Scholar 

  9. Merrill RM. Risk-adjusted melanoma skin cancer incidence rates in whites (United States). Melanoma Res. 2011;21:535–40.

    Article  PubMed  Google Scholar 

  10. Majewski W, Stanienda K, Wicherska K, Ulczok R, Wydmanski J. Treatment outcome and prognostic factors for malignant skin melanoma treated with radical surgery. Asian Pac J Cancer Prev. 2015;16:5709–14.

    Article  PubMed  Google Scholar 

  11. Crocetti E, Mallone S, Robsahm TE, Gavin A, Agius D, Ardanaz E, Lopez MC, Innos K, Minicozzi P, Borgognoni L, Pierannunzio D, Eisemann N: Survival of patients with skin melanoma in Europe increases further: results of the EUROCARE-5 study. Eur J Cancer 2015

  12. Coups EJ, Manne SL, Stapleton JL, Tatum KL, Goydos JS: Skin self-examination behaviors among individuals diagnosed with melanoma. Melanoma research 2015

  13. Yu X, Li Z. Epigenetic deregulations in chordoma. Cell Prolif. 2015;48:497–502.

    Article  CAS  PubMed  Google Scholar 

  14. Sato F, Tsuchiya S, Meltzer SJ, Shimizu K. MicroRNAs and epigenetics. FEBS J. 2011;278:1598–609.

    Article  CAS  PubMed  Google Scholar 

  15. Liloglou T, Bediaga NG, Brown BR, Field JK, Davies MP. Epigenetic biomarkers in lung cancer. Cancer Lett. 2014;342:200–12.

    Article  CAS  PubMed  Google Scholar 

  16. Veeck J, Esteller M. Breast cancer epigenetics: from DNA methylation to microRNAs. J Mammary Gland Biol Neoplasia. 2010;15:5–17.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lujambio A, Portela A, Liz J, Melo SA, Rossi S, Spizzo R, et al. CpG island hypermethylation-associated silencing of non-coding RNAs transcribed from ultraconserved regions in human cancer. Oncogene. 2010;29:6390–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Niles LP, Pan Y, Kang S, Lacoul A. Melatonin induces histone hyperacetylation in the rat brain. Neurosci Lett. 2013;541:49–53.

    Article  CAS  PubMed  Google Scholar 

  19. Sigalotti L, Covre A, Fratta E, Parisi G, Colizzi F, Rizzo A, et al. Epigenetics of human cutaneous melanoma: setting the stage for new therapeutic strategies. J Transl Med. 2010;8:56.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Mazar J, DeBlasio D, Govindarajan SS, Zhang S, Perera RJ. Epigenetic regulation of microRNA-375 and its role in melanoma development in humans. FEBS Lett. 2011;585:2467–76.

    Article  CAS  PubMed  Google Scholar 

  21. Howell Jr PM, Liu S, Ren S, Behlen C, Fodstad O, Riker AI. Epigenetics in human melanoma. Cancer Control. 2009;16:200–18.

    PubMed  Google Scholar 

  22. Bonazzi VF, Stark MS, Hayward NK. MicroRNA regulation of melanoma progression. Melanoma Res. 2012;22:101–13.

    Article  CAS  PubMed  Google Scholar 

  23. Asangani IA, Harms PW, Dodson L, Pandhi M, Kunju LP, Maher CA, et al. Genetic and epigenetic loss of microRNA-31 leads to feed-forward expression of EZH2 in melanoma. Oncotarget. 2012;3:1011–25.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wilmott JS, Colebatch AJ, Kakavand H, Shang P, Carlino MS, Thompson JF, et al. Expression of the class 1 histone deacetylases HDAC8 and 3 are associated with improved survival of patients with metastatic melanoma. Mod Pathol. 2015;28:884–94.

    Article  CAS  PubMed  Google Scholar 

  25. Voso MT, Lo-Coco F, Fianchi L. Epigenetic therapy of myelodysplastic syndromes and acute myeloid leukemia. Curr Opin Oncol. 2015;27:532–9.

    Article  CAS  PubMed  Google Scholar 

  26. Duvic M. Histone deacetylase inhibitors for cutaneous T-cell lymphoma. Dermatol Clin. 2015;33:757–64.

    Article  CAS  PubMed  Google Scholar 

  27. Hrabeta J, Stiborova M, Adam V, Kizek R, Eckschlager T. Histone deacetylase inhibitors in cancer therapy. A review. Biomed Pap Med Fac Univ Palacky Olomouc Czec. 2014;158:161–9.

    Google Scholar 

  28. Lo Nigro C, Wang H, McHugh A, Lattanzio L, Matin R, Harwood C, et al. Methylated tissue factor pathway inhibitor 2 (TFPI2) DNA in serum is a biomarker of metastatic melanoma. J Invest Dermatol. 2013;133:1278–85.

    Article  CAS  PubMed  Google Scholar 

  29. Hoshimoto S, Kuo CT, Chong KK, Takeshima TL, Takei Y, Li MW, et al. AIM1 and LINE-1 epigenetic aberrations in tumor and serum relate to melanoma progression and disease outcome. J Invest Dermatol. 2012;132:1689–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Greenberg ES, Chong KK, Huynh KT, Tanaka R, Hoon DS. Epigenetic biomarkers in skin cancer. Cancer Lett. 2014;342:170–7.

    Article  CAS  PubMed  Google Scholar 

  31. Li Z, Lei H, Luo M, Wang Y, Dong L, Ma Y, et al. DNA methylation downregulated mir-10b acts as a tumor suppressor in gastric cancer. Gastric Cancer. 2015;18:43–54.

    Article  CAS  PubMed  Google Scholar 

  32. Wiklund ED, Gao S, Hulf T, Sibbritt T, Nair S, Costea DE, et al. MicroRNA alterations and associated aberrant DNA methylation patterns across multiple sample types in oral squamous cell carcinoma. PLoS One. 2011;6:e27840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tsumagari K, Baribault C, Terragni J, Chandra S, Renshaw C, Sun Z, et al. DNA methylation and differentiation: HOX genes in muscle cells. Epigenetics Chromatin. 2013;6:25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang Z, Tang H, Wang Z, Zhang B, Liu W, Lu H, et al. Mir-185 targets the DNA methyltransferases 1 and regulates global DNA methylation in human glioma. Mol Cancer. 2011;10:124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wong KY, Huang X, Chim CS. DNA methylation of microRNA genes in multiple myeloma. Carcinogenesis. 2012;33:1629–38.

    Article  CAS  PubMed  Google Scholar 

  36. Taberlay PC, Jones PA. DNA methylation and cancer. Prog Drug Res. 2011;67:1–23.

    CAS  PubMed  Google Scholar 

  37. Lauss M, Ringner M, Karlsson A, Harbst K, Busch C, Geisler J, et al. DNA methylation subgroups in melanoma are associated with proliferative and immunological processes. BMC Med Genomics. 2015;8:73.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Liu Y, Dong Z, Liang J, Guo Y, Guo X, Shen S, Kuang G, Guo W: Methylation-mediated repression of potential tumor suppressor miR-203a and miR-203b contributes to esophageal squamous cell carcinoma development. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine 2015

  39. Otsubo T, Hagiwara T, Tamura-Nakano M, Sezaki T, Miyake O, Hinohara C, et al. Aberrant DNA hypermethylation reduces the expression of the desmosome-related molecule periplakin in esophageal squamous cell carcinoma. Cancer Med. 2015;4:415–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nazarian R, Jazirehi AR. TFPI2 methylation can serve as an epigenetic biomarker of metastatic melanoma. Epigenomics. 2013;5:252–3.

    PubMed  Google Scholar 

  41. Perez-Ramirez C, Canadas-Garre M, Molina MA, Faus-Dader MJ, Calleja-Hernandez MA. PTEN and PI3K/AKT in non-small-cell lung cancer. Pharmacogenomics. 2015;16:1843–62.

    Article  CAS  PubMed  Google Scholar 

  42. Zheng J, Dai Y, Yang Z, Yang L, Peng Z, Meng R, Xiong Y, He J: Ezrin-radixin-moesin-binding phosphoprotein-50 regulates EGF-induced AKT activation through interaction with EGFR and PTEN. Oncology reports 2015. doi: 10.3892/or.2015.4375.

  43. Du J, Wang L, Li C, Yang H, Li Y, Hu H, Li H, Zhang Z: MicroRNA-221 targets PTEN to reduce the sensitivity of cervical cancer cells to gefitinib through the PI3K/Akt signaling pathway. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine 2015

  44. Mirmohammadsadegh A, Marini A, Nambiar S, Hassan M, Tannapfel A, Ruzicka T, et al. Epigenetic silencing of the PTEN gene in melanoma. Cancer Res. 2006;66:6546–52.

    Article  CAS  PubMed  Google Scholar 

  45. Hoon DS, Spugnardi M, Kuo C, Huang SK, Morton DL, Taback B. Profiling epigenetic inactivation of tumor suppressor genes in tumors and plasma from cutaneous melanoma patients. Oncogene. 2004;23:4014–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mori T, Martinez SR, O’Day SJ, Morton DL, Umetani N, Kitago M, et al. Estrogen receptor-alpha methylation predicts melanoma progression. Cancer Res. 2006;66:6692–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mori T, O’Day SJ, Umetani N, Martinez SR, Kitago M, Koyanagi K, et al. Predictive utility of circulating methylated DNA in serum of melanoma patients receiving biochemotherapy. J Clin Oncol. 2005;23:9351–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yu X, Li Z, Yu J, Chan MT, Wu WK. MicroRNAs predict and modulate responses to chemotherapy in colorectal cancer. Cell Prolif. 2015;48:503–10.

    Article  CAS  PubMed  Google Scholar 

  49. Li Z, Yu X, Shen J, Liu Y, Chan MT, Wu WK. MicroRNA dysregulation in rhabdomyosarcoma: a new player enters the game. Cell Prolif. 2015;48:511–6.

    Article  CAS  PubMed  Google Scholar 

  50. Yu X, Li Z. The role of microRNAs expression in laryngeal cancer. Oncotarget. 2015;6:23297–305.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Li Z, Yu X, Shen J, Jiang Y. MicroRNA dysregulation in uveal melanoma: a new player enters the game. Oncotarget. 2015;6:4562–8.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Yu X, Li Z, Chen G, Wu WK. MicroRNA-10b induces vascular muscle cell proliferation through Akt pathway by targeting TIP30. Curr Vasc Pharmacol. 2015;13:679–86.

    Article  CAS  PubMed  Google Scholar 

  53. Yu X, Li Z, Liu J. MiRNAs in primary cutaneous lymphomas. Cell Prolif. 2015;48:271–7.

    Article  CAS  PubMed  Google Scholar 

  54. Li Z, Yu X, Shen J, Chan MT, Wu WK. MicroRNA in intervertebral disc degeneration. Cell Prolif. 2015;48:278–83.

    Article  CAS  PubMed  Google Scholar 

  55. Li Z, Yu X, Shen J, Law PT, Chan MT, Wu WK. MicroRNA expression and its implications for diagnosis and therapy of gallbladder cancer. Oncotarget. 2015;6:13914–24.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Yu X, Li Z, Shen J, Wu WK, Liang J, Weng X, et al. MicroRNA-10b promotes nucleus pulposus cell proliferation through RhoC-Akt pathway by targeting HOXD10 in intervetebral disc degeneration. PLoS One. 2013;8:e83080.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Li Z, Yu X, Wang Y, Shen J, Wu WK, Liang J, et al. By downregulating TIAM1 expression, microRNA-329 suppresses gastric cancer invasion and growth. Oncotarget. 2015;6:17559–69.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Lawrie CH, Gal S, Dunlop HM, Pushkaran B, Liggins AP, Pulford K, et al. Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol. 2008;141:672–5.

    Article  PubMed  Google Scholar 

  59. Ludwig N, Nourkami-Tutdibi N, Backes C, Lenhof HP, Graf N, Keller A, et al. Circulating serum miRNAs as potential biomarkers for nephroblastoma. Pediatr Blood Cancer. 2015;62:1360–7.

    Article  CAS  PubMed  Google Scholar 

  60. Yang C, Wang C, Chen X, Chen S, Zhang Y, Zhi F, et al. Identification of seven serum microRNAs from a genome-wide serum microRNA expression profile as potential noninvasive biomarkers for malignant astrocytomas. Intl J Cancer J Intl Du Cancer. 2013;132:116–27.

    Article  CAS  Google Scholar 

  61. Wei X, Chen D, Lv T, Li G, Qu S: Serum microRNA-125b as a potential biomarker for glioma diagnosis. Molecular neurobiology 2014

  62. Lai NS, Wu DG, Fang XG, Lin YC, Chen SS, Li ZB, et al. Serum microRNA-210 as a potential noninvasive biomarker for the diagnosis and prognosis of glioma. Br J Cancer. 2015;112(Suppl):1241–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cleys ER, Halleran JL, McWhorter E, Hergenreder J, Enriquez VA, da Silveira JC, et al. Identification of microRNAs in exosomes isolated from serum and umbilical cord blood, as well as placentomes of gestational day 90 pregnant sheep. Mol Reprod Dev. 2014;81:983–93.

    Article  CAS  PubMed  Google Scholar 

  64. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A. 2008;105:10513–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Greenberg E, Besser MJ, Ben-Ami E, Shapira-Frommer R, Itzhaki O, Zikich D, et al. A comparative analysis of total serum miRNA profiles identifies novel signature that is highly indicative of metastatic melanoma: a pilot study. Biomarkers. 2013;18:502–8.

    Article  CAS  PubMed  Google Scholar 

  66. Shiiyama R, Fukushima S, Jinnin M, Yamashita J, Miyashita A, Nakahara S, et al. Sensitive detection of melanoma metastasis using circulating microRNA expression profiles. Melanoma Res. 2013;23:366–72.

    Article  CAS  PubMed  Google Scholar 

  67. Ono S, Oyama T, Lam S, Chong K, Foshag LJ, Hoon DS. A direct plasma assay of circulating microRNA-210 of hypoxia can identify early systemic metastasis recurrence in melanoma patients. Oncotarget. 2015;6:7053–64.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Kanemaru H, Fukushima S, Yamashita J, Honda N, Oyama R, Kakimoto A, et al. The circulating microRNA-221 level in patients with malignant melanoma as a new tumor marker. J Dermatol Sci. 2011;61:187–93.

    Article  CAS  PubMed  Google Scholar 

  69. Stark MS, Klein K, Weide B, Haydu LE, Pflugfelder A, Tang YH, et al. The prognostic and predictive value of melanoma-related microRNAs using tissue and serum: a microRNA expression analysis. EBioMed. 2015;2:671–80.

    Article  Google Scholar 

  70. Friedman EB, Shang S, de Miera EV, Fog JU, Teilum MW, Ma MW, et al. Serum microRNAs as biomarkers for recurrence in melanoma. J Transl Med. 2012;10:155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Fleming NH, Zhong J, da Silva IP, Vega-Saenz de Miera E, Brady B, Han SW, et al. Serum-based miRNAs in the prediction and detection of recurrence in melanoma patients. Cancer. 2015;121:51–9.

    Article  CAS  PubMed  Google Scholar 

  72. Tian R, Liu T, Qiao L, Gao M, Li J. Decreased serum microRNA-206 level predicts unfavorable prognosis in patients with melanoma. Int J Clin Exp Pathol. 2015;8:3097–103.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (NSFC) (Grant Number: 81401847).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Li.

Additional information

Yu Xin and Zheng Li contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xin, Y., Li, Z., Chan, M.T. et al. Circulating epigenetic biomarkers in melanoma. Tumor Biol. 37, 1487–1492 (2016). https://doi.org/10.1007/s13277-015-4599-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-4599-0

Keywords

Navigation