Tumor Biology

, Volume 37, Issue 6, pp 7213–7227 | Cite as

Silencing stem cell factor attenuates stemness and inhibits migration of cancer stem cells derived from Lewis lung carcinoma cells

  • Li Wang
  • JianTao Wang
  • Zhixi Li
  • YanYang Liu
  • Ming Jiang
  • Yan Li
  • Dan Cao
  • Maoyuan Zhao
  • Feng Wang
  • Feng Luo
Original Article


Stem cell factor (SCF) plays an important role in tumor growth and metastasis. However, the function of SCF in regulating stemness and migration of cancer stem cells (CSCs) remains largely undefined. Here, we report that non-adhesive culture system can enrich and expand CSCs derived from Lewis lung carcinoma (LLC) cells and that the expression level of SCF in CSCs was higher than those in LLC cells. Silencing SCF via short hairpin (sh) RNA lentivirus transduction attenuated sphere formation and inhibited expressions of stemness genes, ALDH1, Sox2, and Oct4 of CSCs in vitro and in vivo. Moreover, SCF-silenced CSCs inhibited the migration and epithelial-mesenchymal transition, with decreased expression of N-cadherin, Vimentin, and increased expression of E-cadherin in vitro and in vivo. Finally, SCF-short hairpin RNA (shRNA) lentivirus transduction suppressed tumorigenicity of CSCs. Taken together, our findings unraveled an important role of SCF in CSCs derived from LLC cells. SCF might serve as a novel target for lung cancer therapy.


Stem cell factor Cancer stem cell Epithelial-mesenchymal transformation Lewis lung carcinoma 



Stem cell factor


Epithelial-mesenchymal transformation


Cancer stem cells


Lewis lung carcinoma


Sphere formation efficiency



This work was supported by the National Natural Science Foundation of China (81372506)

Compliance with ethical standards

Conflicts of interest



  1. 1.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65:5–29.CrossRefPubMedGoogle Scholar
  2. 2.
    Lundin A, Driscoll B. Lung cancer stem cells: progress and prospects. Cancer Lett. 2013;338:89–93.CrossRefPubMedGoogle Scholar
  3. 3.
    Flaherty JD O, Barr M, Fennell D. The cancer stem-cell hypothesis: its emerging role in lung cancer biology and its relevance for future therapy. J Thorac Oncol. 2012;7:1880–90.CrossRefGoogle Scholar
  4. 4.
    Wang L, Guo H, Lin C, et al. Enrichment and characterization of cancer stem like cells from a cervical cancer cell line. Mol Med Rep. 2014;9:2117–23.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Wang L, Guo H, Yang L, et al. Morusin inhibits human cervical cancer stem cell growth and migration through attenuation of NF-kB activity and apoptosis induction. Mol Cell Biochem. 2013;379:7–18.CrossRefPubMedGoogle Scholar
  6. 6.
    Martin FH, Suggs SV, Langley KE, et al. Primary structure and functional expression of rat and human stem cell factor DNAs. Cell. 1990;63:203–11.CrossRefPubMedGoogle Scholar
  7. 7.
    Zsebo KM, Williams DA, Geissler EN, et al. Stem cell factor is encoded at the SI locus of the mouse and is the ligand for the c-kit tyrosine kinase receptor. Cell. 1990;63:213–24.CrossRefPubMedGoogle Scholar
  8. 8.
    Lennartsson J, Ronnstrand L. Stem cell factor receptor/c-kit: from basic science to clinical implications. Physiol Rev. 2012;92:1619–49.CrossRefPubMedGoogle Scholar
  9. 9.
    Broudy VC. Stem cell factor and hematopoiesis. Blood. 1997;90:1345–64.PubMedGoogle Scholar
  10. 10.
    Sette C, Dolci S, Geremia R, Rossi P. The role of stem cell factor and of alternative c-kit gene products in the establishment, maintenance and function of grem cells. Int J Dev Biol. 2000;44:599–608.PubMedGoogle Scholar
  11. 11.
    Yoshida H, Kunisada T, Grimm T, et al. Review: melanocyte migration and survival controlled by SCF/c-kit expression. J Investig Dermatol Symp Proc. 2001;6:1–5.CrossRefPubMedGoogle Scholar
  12. 12.
    Kindler T, Breitenbuecher F, Marx A, et al. Efficacy and safety of imatinib in adult patients with c-kit-positive acute myeloid leukemia. Blood. 2004;103:3644–54.CrossRefPubMedGoogle Scholar
  13. 13.
    Wang X, Ren H, Zhao T, et al. Stem cell factor is a novel independent prognostic biomarker for hepatocellular carcinoma after curative resection. Carcinogenesis. 2014;35:2283–90.CrossRefPubMedGoogle Scholar
  14. 14.
    Chiron D, Maiqa S, Surget S, et al. Autocrine insulin-like growth factor 1 and stem cell factor but not interleukin 6 support self-renewal of human myeloma cells. Blood Cancer J. 2013;3:e120.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Catalano A, Rodilossi S, Rippo MR, et al. Induction of stem cell factor/c-Kit/slug signal transduction in multidrug-resistant malignant mesothelioma cells. J Biol Chem. 2004;279:46706–14.CrossRefPubMedGoogle Scholar
  16. 16.
    Chen SF, Chang YC, Nieh S, et al. Nonadhesive culture system as a model of rapid sphere formation with cancer stem cell properties. PLoS One. 2012;7:e31864.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Huang YC, Yang ZM, Chen XH, et al. Isolation of mesenchymal stem cells from human placental decidua basalis and resistance to hypoxia and serum deprivation. Stem Cell Rev. 2009;5:247–55.CrossRefPubMedGoogle Scholar
  18. 18.
    Van Meerloo J, Kaspers GJ, Cloos J. Cell sensitivity assays: the MTT. Methods Mol Biol. 2011;731:237–45.CrossRefPubMedGoogle Scholar
  19. 19.
    Allred DC, Harvev JM, Berardo M, et al. Prognostic and predictive factors in breast cancer by immunohistochemical analysis. Mod Pathol. 1998;11:155–68.PubMedGoogle Scholar
  20. 20.
    Frlay J, Shin HR, Bray F, et al. Estimates of worldwide burden of cancer in 2008: GLOBOCAN2008. Int J Cancer. 2010;127:2893–917.CrossRefGoogle Scholar
  21. 21.
    Mao XG, Guo G, Wang P, et al. Maintenance of critical properties of brain tumor stem-like cells after cryopreservation. Cell Mol Neurobiol. 2010;30:775–86.CrossRefPubMedGoogle Scholar
  22. 22.
    Su YJ, Lai HM, Chang YW, et al. Direct reprogramming of stem cell properies in colon cancer cell by CD44. EMBO J. 2010;30:3186–99.CrossRefGoogle Scholar
  23. 23.
    Zhang LL, Jiao M, Li L, et al. Tumor spheres derived from prostate cancer cells possess chemoresistant and cancer stem cell properties. J Cancer Res Clin Oncol. 2012;138:675–86.CrossRefPubMedGoogle Scholar
  24. 24.
    Zhang S, Balch C, Chan MW, et al. Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res. 2008;68:4311–20.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Williams A, Datar R, Cote R. Technologies and methods used for the detection, enrichment and characterization of cancer stem cells. NatI Med J India. 2010;23:346–50.Google Scholar
  26. 26.
    Szotek PP, Pieretti VR, Masiakos PT, et al. Ovarin cancer side population defines cells with stem cell-like characteristics and Mullerian inhibiting substance responsiveness. Proc NatI Acad Sci USA. 2006;103:11154–9.CrossRefGoogle Scholar
  27. 27.
    Guo Y, Liu S, Wang P. Expression profile of embryonic stem cell associated genes Oct4, Sox2 and Nanog in human gliomas. Histopathology. 2011;59:763–75.CrossRefPubMedGoogle Scholar
  28. 28.
    Oppel F, Muller N, Schackert G. Sox2-RNAi attenutates S-phase entry and induces RhoA-dependent switch to protease-independent amoeboid migration in human glioma cells. Mol Cancer. 2011;10:137.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Ikushima H, Todo T, Ino Y. Glioma-initiating cells retain their tumorigenicity through integration of the Sox axis and Oct4 protein. J Biol Chem. 2011;286:41434–41.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Zhang D, Zheng L, Shi H, et al. Suppression of Peritoneal tumorigenesis by placenta-derived mesenchymal stem cells expressing endostatin on colorectal cancer. Int J Med Sci. 2014;11:870–9.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Li K, Li B, Gao LN, et al. Mesenchymal stem cell characteristics of dental pulp and periodontal ligament stem cells after in vivo transplantation. Biomaterials. 2014;35:6332–43.CrossRefPubMedGoogle Scholar
  32. 32.
    Yi F, Khan M, Gao H, et al. Increased differentiation capacity of bone marrow-derived mesenchymal stem cells in aquaporin-5 deficiency. Stem Cells Dev. 2012;21:2495–507.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Desai A, Webb B, Geson SL. CD113+ cells contribute to radioresistance via altered regulation of DNA repair genes in human lung cancer cells. Raidother Oncol. 2014;110:538–45.CrossRefGoogle Scholar
  34. 34.
    Xie ZY, Lv K, Xiong Y, Guo WH. ABCG2-meditated multidrug resistance and tumor-initiating capacity of side population cells from colon cancer. Oncol Res Treat. 2014;37(11):666–8. 670-2.CrossRefPubMedGoogle Scholar
  35. 35.
    Wang F, Mi YJ, Chen XG, et al. Axitinib targeted cancer stem like cells to enhance efficacy of chemotherapeutic drugs via inhibiting the drug transport function of ABCG2. Mol Med. 2012;18:887–98.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Yu L, Liu X, Cui K, et al. SND1 acts downstream of TGFB1 and upstream of Smurf1 to promote breast cancer metastasis. Cancer Res. 2015;75:1275–86.CrossRefPubMedGoogle Scholar
  37. 37.
    Joseph JV, Conroy S, Pavlov K, et al. Hypoxia enhanced migration and invasion in glioblastoma by promoting a mesenchymal shift mediated by the HIF-1a-ZEB1 axis. Cancer Lett. 2015;359:107–16.CrossRefPubMedGoogle Scholar
  38. 38.
    Piao Z, Hong CS, Jung MR, et al. Thymosin B4 induces invasion and migration of human colorectal cancer cells through the ILK/AKT/B-catenin signaling pathway. Biochem Biophys Tes Commun. 2014;452:858–64.CrossRefGoogle Scholar
  39. 39.
    Hollier BG, Evans K, Mani SA. The epithelial to mesenchymal transition and cancer stem cells: a coalition against cancer therapies. J Mammary Gland Biol Neoplasia. 2009;14:29–43.CrossRefPubMedGoogle Scholar
  40. 40.
    Mani SA, Guo W, Liao MJ, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133:704–15.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Morel AP, Lievre M, Thomas C, et al. Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS One. 2008;3:e2888.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Cao L, Zhou Y, Zhai B, et al. Sphere-forming cell subpopulations with cancer stem cell properties in human hepatoma cell lines. BMC Gastroenterol. 2011;11:71.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Yang L, Guo H, Dong L, et al. Tanshione IIA inhibits the growth, attenuates the stemness and induces the apoptosis of human glioma stem cells. Oncol Rep. 2014;2:1303–11.Google Scholar
  44. 44.
    Lin C, Wang L, Wang H, et al. Tanshinone IIA inhibits breast cancer stem cells growth in vitro and in vivo through attenuation of IL-6/STAT3/NF-kB signaling pathway. J Cell Biochem. 2013;114:2061–70.CrossRefPubMedGoogle Scholar
  45. 45.
    Yasuda A. The stem cell factor/c-kit receptor pathway enhances proliferation and invasion of pancreatic cancer cells. Mol Cancer. 2006;5:46.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Aguilar C, Aguilar C, Lopez MR, et al. Co-stimulation with stem cell factor and erythropoietin enhances migration of c-kit expressing cervical cancer cells through the sustained activation of ERK1/2. Mol Med Rep. 2014;9:1895–902.PubMedGoogle Scholar
  47. 47.
    Wiesner C, Nabha SM, Dos Santos EB, et al. C-kit and its ligand stem cell factor: potential contribution to prostate cancer bone metastasis. Neoplasia. 2008;10:996–1003.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Chen L. Precancerous stem cells have the potential for both benign and malignant differentiation. PLoS One. 2007;2:e293.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Brian Druker J, Diana Griffith J, Michael Heinrich C, et al. inhibition of c-kit receptor tyrosine kinase activity by STI 571, a selective tyrosine kinase inhibitor. Blood. 2000;96:925–32.Google Scholar
  50. 50.
    Bai CG, Hou XW, Wang F, et al. Stem cell factor-mediated wild-type KIT receptor activation is critical for gastrointestinal stromal tumor cell growth. World J Gastroenterol. 2012;18:2929–37.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Belloc F, Airiau K, Jeanneteau M, et al. The stem cell factor-c-KIT pathway must be inhibited to enable apoptosis induced by BCR-ABL inhibitors in chronic myelogenous leukemia cells. Leukemia. 2009;23:679–85.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Li Wang
    • 1
  • JianTao Wang
    • 1
  • Zhixi Li
    • 1
  • YanYang Liu
    • 1
  • Ming Jiang
    • 1
  • Yan Li
    • 1
  • Dan Cao
    • 1
  • Maoyuan Zhao
    • 1
  • Feng Wang
    • 1
  • Feng Luo
    • 1
  1. 1.Department of Medical Oncology, Lung Cancer Center, Cancer Center and State Key Laboratory of BiotherapyWest China Hospital of Sichuan UniversityChengduChina

Personalised recommendations