Tumor Biology

, Volume 37, Issue 5, pp 6923–6933 | Cite as

Synthesis and antitumor activity evaluation of a novel porphyrin derivative for photodynamic therapy in vitro and in vivo

  • Li-Jun Zhang
  • Yi-Jia Yan
  • Ping-Yong Liao
  • Davor Margetic
  • Li Wang
  • Zhi-Long Chen
Original Article


A novel porphyrin derivative, 5, 10, 15, 20-tetrakis (5-morpholinopentyl)-21H, 23H-Porphin (MPP, 4) and its photophysical characteristics, therapeutic efficacy of photodynamic therapy (PDT) in vitro and in vivo, tumor selectivity, and clearance from normal tissues were investigated here. MPP has strong absorption at relatively long wavelength (λmax = 648 nm, molar absorption coefficient ε ∼ 17,200 M−1cm−1) and can emit strong fluorescence at 653 and 718 nm. When administered to the animal tumor models by tail vein injection, MPP was capable of accumulating in the tumor site, as examined in vivo with the fluorescence signal of MPP. By the combination of MPP and a 650-nm laser irradiation, the viability of T24 cells could decrease by 4.37 %, and inhibition rate of T24 tumor could increase up to 91.21 % compared with control group, demonstrating the potential of MPP as an effective photosensitizer in PDT for tumor treatment.


MPP Porphyrin Antitumor Photodynamic therapy Photosensitizer 



10, 15, 20-tetrakis (5-morpholinopentyl)-21H, 23H-Porphin


Photodynamic therapy


Reactive oxygen species


Singlet oxygen


1, 3-diphenylisobenzofuran


Dimethyl sulfoxide


N, N-dimethylformamide


Phosphate buffered saline


Cell human bladder cancer cell line


Fetal bovine serum




3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-tetrazolium bromide



This work was supported by Chinese National Natural Science Foundation (No. 21372042, 21402236, 81301878), Foundation of Shanghai government (No.14431906200, 14140903500, 13431900700, 13430722300, 13ZR1441000, 13ZR1440900, 14ZR1439800, 14ZR1439900, 15ZR1439900, 15XD1523400, 14SJGGYY08, 201370), International Cooperation Foundation of China and Croatia (6–11) and Foundation of Yiwu Science and Technology Bureau (No. 2012-G3-02, 2013-G3-03).

Compliance with ethical standards

Conflicts of interest



  1. 1.
    Dougherty TJ. Photodynamic therapy: Part II. Semin Surg Oncol. 1995;11(5):333–4.CrossRefPubMedGoogle Scholar
  2. 2.
    Triesscheijn M, Baas P, Schellens JH, Stewart FA. Photodynamic therapy in oncology. Oncologist. 2006;11(9):1034–44. doi: 10.1634/theoncologist.11-9-1034.CrossRefPubMedGoogle Scholar
  3. 3.
    Dolmans DE, Fukumura D, Jain RK. Photodynamic therapy for cancer. Nat Rev Cancer. 2003;3(5):380–7. doi: 10.1038/nrc1071.CrossRefPubMedGoogle Scholar
  4. 4.
    Huang Z. A review of progress in clinical photodynamic therapy. Technol Cancer Res Treat. 2005;4(3):283–93.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Brundish DE, Love WG. Photodynamic therapy comes of age. IDrugs. 2000;3(12):1487–508.PubMedGoogle Scholar
  6. 6.
    Celli JP, Spring BQ, Rizvi I, Evans CL, Samkoe KS, Verma S, et al. Imaging and photodynamic therapy: mechanisms, monitoring, and optimization. Chem Rev. 2010;110(5):2795–838. doi: 10.1021/cr900300p.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Allison RR, Moghissi K. Photodynamic therapy (PDT): PDT mechanisms. Clin Endocrinol. 2013;46(1):24–9. doi: 10.5946/ce.2013.46.1.24.Google Scholar
  8. 8.
    MacCormack MA. Photodynamic therapy. Adv Dermatol. 2006;22:219–58.CrossRefPubMedGoogle Scholar
  9. 9.
    Wilson BC, Patterson MS. The physics, biophysics and technology of photodynamic therapy. Phys Med Biol. 2008;53(9):R61–R109. doi: 10.1088/0031-9155/53/9/R01.CrossRefPubMedGoogle Scholar
  10. 10.
    Kempa M, Kozub P, Kimball J, Rojkiewicz M, Kus P, Gryczynski Z, et al. Physicochemical properties of potential porphyrin photosensitizers for photodynamic therapy. Spectrochim Acta A Mol Biomol Spectrosc. 2015;146:249–54. doi: 10.1016/j.saa.2015.03.076.CrossRefPubMedGoogle Scholar
  11. 11.
    Plaetzer K, Krammer B, Berlanda J, Berr F, Kiesslich T. Photophysics and photochemistry of photodynamic therapy: fundamental aspects. Lasers Med Sci. 2009;24(2):259–68. doi: 10.1007/s10103-008-0539-1.CrossRefPubMedGoogle Scholar
  12. 12.
    Castano AP, Demidova TN, Hamblin MR. Mechanisms in photodynamic therapy: part one-photosensitizers, photochemistry and cellular localization. Photodiagn Photodyn Ther. 2004;1(4):279–93. doi: 10.1016/S1572-1000(05)00007-4.CrossRefGoogle Scholar
  13. 13.
    Detty MR, Gibson SL, Wagner SJ. Current clinical and preclinical photosensitizers for use in photodynamic therapy. J Med Chem. 2004;47(16):3897–915. doi: 10.1021/jm040074b.CrossRefPubMedGoogle Scholar
  14. 14.
    Moan J. Porphyrin photosensitization and phototherapy. Photochem Photobiol. 1986;43(6):681–90.CrossRefPubMedGoogle Scholar
  15. 15.
    Friedberg JS, Mick R, Stevenson J, Metz J, Zhu T, Buyske J, et al. A phase I study of Foscan-mediated photodynamic therapy and surgery in patients with mesothelioma. Ann Thorac Surg. 2003;75(3):952–9.CrossRefPubMedGoogle Scholar
  16. 16.
    Javaid B, Watt P, Krasner N. Photodynamic therapy (PDT) for oesophageal dysplasia and early carcinoma with mTHPC (m-tetrahydroxyphenyl chlorin): a preliminary study. Lasers Med Sci. 2002;17(1):51–6. doi: 10.1007/s101030200009.CrossRefPubMedGoogle Scholar
  17. 17.
    Kato H, Furukawa K, Sato M, Okunaka T, Kusunoki Y, Kawahara M, et al. Phase II clinical study of photodynamic therapy using mono-L-aspartyl chlorin e6 and diode laser for early superficial squamous cell carcinoma of the lung. Lung Cancer. 2003;42(1):103–11.CrossRefPubMedGoogle Scholar
  18. 18.
    Taber SW, Fingar VH, Coots CT, Wieman TJ. Photodynamic therapy using mono-L-aspartyl chlorin e6 (Npe6) for the treatment of cutaneous disease: a phase I clinical study. Clin Cancer Res. 1998;4(11):2741–6.PubMedGoogle Scholar
  19. 19.
    Lee LK, Whitehurst C, Pantelides ML, Moore JV. In situ comparison of 665 nm and 633 nm wavelength light penetration in the human prostate gland. Photochem Photobiol. 1995;62(5):882–6.CrossRefPubMedGoogle Scholar
  20. 20.
    Selman SH, Fitkin DL, Keck RW, Morgan AR, Doiron DR. Treatment of the transplantable FANFT induced bladder tumors with the purpurin SnET2 and red light emitted by a pulsed frequency doubled Nd:YAG laser. J Laser Appl. 1991;3(2):45–8.CrossRefPubMedGoogle Scholar
  21. 21.
    Ivy SP, Blatner G, Cheson BD. Clinical trials referral resource. Clinical trials with gadolinium-texaphyrin and lutetium-texaphyrin. Oncology. 1999;13(5):671. 4–6.PubMedGoogle Scholar
  22. 22.
    Dimofte A, Zhu TC, Hahn SM, Lustig RA. In vivo light dosimetry for motexafin lutetium-mediated PDT of recurrent breast cancer. Lasers Surg Med. 2002;31(5):305–12. doi: 10.1002/lsm.10115.CrossRefPubMedGoogle Scholar
  23. 23.
    Hsi RA, Kapatkin A, Strandberg J, Zhu T, Vulcan T, Solonenko M, et al. Photodynamic therapy in the canine prostate using motexafin lutetium. Clin Cancer Res. 2001;7(3):651–60.PubMedGoogle Scholar
  24. 24.
    Howard JA. The new wilderness. J Am Coll Dent. 1976;43(1):15–22. 32.PubMedGoogle Scholar
  25. 25.
    Karagianis G, Hill JS, Stylli SS, Kaye AH, Varadaxis NJ, Reiss JA, et al. Evaluation of porphyrin C analogues for photodynamic therapy of cerebral glioma. Br J Cancer. 1996;73(4):514–21.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Chen JJ, Hong G, Gao LJ, Liu TJ, Cao WJ. In vitro and in vivo antitumor activity of a novel porphyrin-based photosensitizer for photodynamic therapy. J Cancer Res Clin Oncol. 2015. doi: 10.1007/s00432-015-1918-1.Google Scholar
  27. 27.
    Dimitrova DZ, Kubat P, Dimitrov S, Belokonski E, Bogoeva V. Photophysical characterisation and studies of the effect of palladium(II) 5,10,15,20-tetrakis-(4-sulfonatophenyl)-porphyrin on isometric contraction of isolated human mesenteric artery: good news for photodynamic therapy. Photodiagn Photodyn Ther. 2014;11(3):391–9. doi: 10.1016/j.pdpdt.2014.06.002.CrossRefGoogle Scholar
  28. 28.
    Dabrowski JM, Krzykawska M, Arnaut LG, Pereira MM, Monteiro CJ, Simoes S, et al. Tissue uptake study and photodynamic therapy of melanoma-bearing mice with a nontoxic, effective chlorin. ChemMedChem. 2011;6(9):1715–26. doi: 10.1002/cmdc.201100186.CrossRefPubMedGoogle Scholar
  29. 29.
    Redmond RW, Gamlin JN. A compilation of singlet oxygen yields from biologically relevant molecules. Photochem Photobiol. 1999;70(4):391–475.CrossRefPubMedGoogle Scholar
  30. 30.
    Stockert JC, Canete M, Juarranz A, Villanueva A, Horobin RW, Borrell JI, et al. Porphycenes: facts and prospects in photodynamic therapy of cancer. Curr Med Chem. 2007;14(9):997–1026.CrossRefPubMedGoogle Scholar
  31. 31.
    Oleinick NL, Morris RL, Belichenko T. The role of apoptosis in response to photodynamic therapy: what, where, why, and how. Photoch Photobio Sci. 2002;1(1):1–21. doi: 10.1039/B108586g.CrossRefGoogle Scholar
  32. 32.
    Krammer B. Vascular effects of photodynamic therapy. Anticancer Res. 2001;21(6B):4271–7.PubMedGoogle Scholar
  33. 33.
    Castano AP, Mroz P, Hamblin MR. Photodynamic therapy and anti-tumour immunity. Nat Rev Cancer. 2006;6(7):535–45. doi: 10.1038/nrc1894.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Li-Jun Zhang
    • 1
  • Yi-Jia Yan
    • 2
  • Ping-Yong Liao
    • 1
  • Davor Margetic
    • 3
  • Li Wang
    • 1
  • Zhi-Long Chen
    • 1
  1. 1.Department of Pharmaceutical Science & Technology, College of Chemistry and BiologyDonghua UniversityShanghaiChina
  2. 2.Ningbo Dongmi Pharmaceutical Co. LtdNingboChina
  3. 3.Division of organic chemistry and biochemistryRudjer Boskovic InstituteZagrebCroatia

Personalised recommendations