Advertisement

Tumor Biology

, Volume 37, Issue 2, pp 1479–1485 | Cite as

A brief review on long noncoding RNAs: a new paradigm in breast cancer pathogenesis, diagnosis and therapy

  • Sara Malih
  • Massoud Saidijam
  • Narges Malih
Review

Abstract

With the development of technologies such as microarrays and RNA deep sequencing, long noncoding RNAs (lncRNAs) have become the focus of cancer investigations. LncRNAs, nonprotein-coding RNA molecules longer than 200 nucleotides, are dysregulated in many human diseases, especially in cancers. Recent studies have demonstrated that lncRNAs play a key regulatory role in gene expression and cancer biology through diverse mechanisms, including chromosome remodeling and transcriptional and post-transcriptional modifications. The expression levels of specific lncRNAs are attributed to prognosis, metastasis, and recurrence of cancer. LncRNAs are often involved in various biological processes, such as regulation of alternative splicing of mRNA, protein activity, and epigenetic modulation or silencing of the microRNAs, via discrete mechanisms. Deregulated levels of lncRNAs are shown in diverse tumors, including breast cancer. Based on latest research data, the tissue-specific expression signature of lncRNAs may represent the potential to discriminate normal and tumor tissue or even the different stages of breast cancer, which makes them clinically beneficial as possible biomarkers in the diagnosis and prognosis or therapeutic targets. In this brief review, we summarize some recent researches in the context of lncRNAs’ roles in breast cancer pathogenesis and their potential to serve as diagnostic, predictive, and prognostic biomarkers and novel targets for breast cancer treatment.

Keywords

Breast neoplasms Biological markers Long noncoding RNAs Diagnosis Prognosis Epigenesis 

Notes

Compliance with ethical standards

Conflicts of interest

None

References

  1. 1.
    International Agency for Research on Cancer (IARC). Cancer Facts and Figures. [ONLINE]. 2013. Available at: http://globocan.iarc.fr/Pages/fact_sheets_cancer.aspx.
  2. 2.
    Koboldt DCFR, McLellan MD, Schmidt H, Kalicki-Veizer J, et al. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61–70. doi: 10.1038/nature11412.CrossRefGoogle Scholar
  3. 3.
    Meng J, Li P, Zhang Q, Yang Z, Fu S. A four-long non-coding RNA signature in predicting breast cancer survival. J Exp Clin Cancer Res. 2014;33(1):84. doi: 10.1186/s13046-014-0084-7.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Hansji H, Leung EY, Baguley BC, FInlay G, Askarian-Amiri ME. Keeping Abreast with long non-coding RNAs in mammary gland development and breast cancer. Front Genet. 2014;5. doi: 10.3389/fgene.2014.00379.
  5. 5.
    Vikram R, Ramachandran R, Abdul K. Functional significance of long non-coding RNAs in breast cancer. Breast Cancer. 2014;21(5):515–21. doi: 10.1007/s12282-014-0554-y.PubMedCrossRefGoogle Scholar
  6. 6.
    Su X, Malouf GG, Chen Y, Zhang J, Yao H, Valero V, et al. Comprehensive analysis of long non-coding RNAs in human breast cancer clinical subtypes. Oncotarget. 2014;5(20):9864–76.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Ye N, Wang B, Quan Z-F, Cao S-J, Wen X-T, Huang Y, et al. Functional roles of long non-coding RNA in human breast cancer. Asian Pac J Cancer Prev. 2014;15(15):5993.PubMedCrossRefGoogle Scholar
  8. 8.
    Merry CR, Niland C, Khalil AM. Diverse functions and mechanisms of mammalian long noncoding RNAs. Methods Mol Biol. 2015;1206:1–14. doi: 10.1007/978-1-4939-1369-5_1
  9. 9.
    Sana J, Faltejskova P, Svoboda M, Slaby O. Novel classes of non-coding RNAs and cancer. J Transl Med. 2012;10(1):103. doi: 10.1186/1479-5876-10-103.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Juracek J, Iliev R, Svoboda M, Slaby O. Long noncoding RNAs in breast cancer: implications for pathogenesis, diagnosis, and therapy. In: Barh D, editor. Omics approaches in breast cancer. India: Springer; 2014. p. 153–70.Google Scholar
  11. 11.
    Serviss JT, Johnsson P, Grandér D. An emerging role for long non-coding RNAs in cancer metastasis. Front Genet. 2014;5:234. doi: 10.3389/fgene.2014.00234.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Qiu M-T, Hu J-W, Yin R, Xu L. Long noncoding RNA: an emerging paradigm of cancer research. Tumor Biol. 2013;34(2):613–20. doi: 10.1007/s13277-013-0658-6.CrossRefGoogle Scholar
  13. 13.
    Shi X, Sun M, Liu H, Yao Y, Song Y. Long non-coding RNAs: a new frontier in the study of human diseases. Cancer Lett. 2013;339(2):159–66. doi: 10.1016/j.canlet.2013.06.013.PubMedCrossRefGoogle Scholar
  14. 14.
    Shen X-h, Qi P, Du X. Long non-coding RNAs in cancer invasion and metastasis. Mod Pathol. 2015;28(1):4–13. doi: 10.1038/modpathol.2014.75.PubMedCrossRefGoogle Scholar
  15. 15.
    Liu Y, Sharma S, Watabe K. Roles of lncRNA in breast cancer. Front Biosci (Schol Ed). 2015;7:94–108.CrossRefGoogle Scholar
  16. 16.
    Gabory A, Jammes H, Dandolo L. The H19 locus: role of an imprinted non-coding RNA in growth and development. BioEssays. 2010;32(6):473–80. doi: 10.1002/bies.200900170.PubMedCrossRefGoogle Scholar
  17. 17.
    Subramanian M, Jones MF, Lal A. Long non-coding RNAs embedded in the Rb and p53 pathways. Cancers (Basel). 2013;5(4):1655–75. doi: 10.3390/cancers5041655.CrossRefGoogle Scholar
  18. 18.
    Barsyte-Lovejoy D, Lau SK, Boutros PC, Khosravi F, Jurisica I, Andrulis IL, et al. The c-Myc oncogene directly induces the H19 noncoding RNA by allele-specific binding to potentiate tumorigenesis. Cancer Res. 2006;66(10):5330–7. doi: 10.1158/0008-5472.can-06-0037.PubMedCrossRefGoogle Scholar
  19. 19.
    Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature. 2010;464(7291):1071–6. doi: 10.1038/nature08975.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Wang L, Zeng X, Chen S, Ding L, Zhong J, Zhao JC, et al. BRCA1 is a negative modulator of the PRC2 complex. EMBO J. 2013;32(11):1584–97. doi: 10.1038/emboj.2013.95.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Mourtada-Maarabouni M, Pickard MR, Hedge VL, Farzaneh F, Williams GT. GAS5, a non-protein-coding RNA, controls apoptosis and is downregulated in breast cancer. Oncogene. 2008;28(2):195–208. doi: 10.1038/onc.2008.373.PubMedCrossRefGoogle Scholar
  22. 22.
    Kino T, Hurt DE, Ichijo T, Nader N, Chrousos GP. Noncoding RNA Gas5 is a growth arrest– and starvation-associated repressor of the glucocorticoid receptor. Sci Signal. 2010;3(107):ra8. doi: 10.1126/scisignal.2000568.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Mourtada-Maarabouni M, Hedge VL, Kirkham L, Farzaneh F, Williams GT. Growth arrest in human T-cells is controlled by the non-coding RNA growth-arrest-specific transcript 5 (GAS5). J Cell Sci. 2008;121(7):939–46. doi: 10.1242/jcs.024646.PubMedCrossRefGoogle Scholar
  24. 24.
    Ji P, Diederichs S, Wang W, Boing S, Metzger R, Schneider PM, et al. MALAT-1, a novel noncoding RNA, and thymosin [beta]4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene. 2003;22(39):8031–41.PubMedCrossRefGoogle Scholar
  25. 25.
    Gutschner T, Hämmerle M, Diederichs S. MALAT1—a paradigm for long noncoding RNA function in cancer. J Mol Med (Berl). 2013;91(7):791–801. doi: 10.1007/s00109-013-1028-y.CrossRefGoogle Scholar
  26. 26.
    Lin R, Maeda S, Liu C, Karin M, Edgington TS. A large noncoding RNA is a marker for murine hepatocellular carcinomas and a spectrum of human carcinomas. Oncogene. 2006;26(6):851–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Froberg JE, Yang L, Lee JT. Guided by RNAs: X-inactivation as a model for lncRNA function. J Mol Biol. 2013;425(19):3698–706. doi: 10.1016/j.jmb.2013.06.031.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Ganesan S, Silver DP, Drapkin R, Greenberg R, Feunteun J, Livingston DM. Association of BRCA1 with the inactive X chromosome and XIST RNA. Philos Trans R Soc Lond B Biol Sci. 2004;359(1441):123–8.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Vincent-Salomon A, Ganem-Elbaz C, Manié E, Raynal V, Sastre-Garau X, Stoppa-Lyonnet D, et al. X inactive-specific transcript RNA coating and genetic instability of the X chromosome in BRCA1 breast tumors. Cancer Res. 2007;67(11):5134–40. doi: 10.1158/0008-5472.can-07-0465.PubMedCrossRefGoogle Scholar
  30. 30.
    Weakley SM, Wang H, Yao Q, Chen C. Expression and function of a large non-coding RNA gene XIST in human cancer. World J Surg. 2011;35(8):1751–6. doi: 10.1007/s00268-010-0951-0.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Cayre A, Rossignol F, Clottes E, Penault-Llorca F. aHIF but not HIF-1α transcript is a poor prognostic marker in human breast cancer. Breast Cancer Res. 2003;5(6):R223–30.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Chi Y, Huang S, Yuan L, Liu M, Huang N, Zhou S, et al. Role of BC040587 as a predictor of poor outcome in breast cancer. Cancer Cell Int. 2014;14. doi: 10.1186/s12935-014-0123-7.
  33. 33.
    Shi Y, Li J, Liu Y, Ding J, Fan Y, Tian Y, et al. The long noncoding RNA SPRY4-IT1 increases the proliferation of human breast cancer cells by upregulating ZNF703 expression. Mol Cancer. 2015;14(1):51. doi: 10.1186/s12943-015-0318-0.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Liu J, Shen L, Yao J, Li Y, Wang Y, Chen H, et al. Forkhead box C1 promoter upstream transcript, a novel long non-coding RNA, regulates proliferation and migration in basal-like breast cancer. Mol Med Rep. 2015;11(4):3155–9. doi: 10.3892/mmr.2014.3089.PubMedGoogle Scholar
  35. 35.
    Khoshhali M, Moslemi A, Saidijam M, Poorolajal J, Mahjub H. Predicting the categories of colon cancer using microarray data and nearest shrunken centroid. J Biostat Epidemiol. 2014;1(1).Google Scholar
  36. 36.
    Xu N, Wang F, Lv M, Cheng L. Microarray expression profile analysis of long non-coding RNAs in human breast cancer: a study of Chinese women. Biomed Pharmacother. 2015;69:221–7. doi: 10.1016/j.biopha.2014.12.002.PubMedCrossRefGoogle Scholar
  37. 37.
    Yadegarazari R, Saidijam M. Using RT-PCR and qRT-PCR to assay RNA markers in detection of peripheral colorectal circulating cells: a systemic review. Clin Biochem. 2011;44(13):S196. doi: 10.1016/j.clinbiochem.2011.08.479.Google Scholar
  38. 38.
    Karimi S, Mohamadnia A, Nadji SA, Yadegarazari R, Khosravi A, Bahrami N, et al. Expression of two basic mRNA biomarkers in peripheral blood of patients with non-small cell lung cancer detected by real-time rt-PCR, individually and simultaneously. Iran Biomed J. 2015;19(1):17.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Yadegarazari R, Hassanzadeh T, Majlesi A, Keshvari A, Monsef Esfahani A, Tootoonchi A, et al. Improved real-time RT-PCR assays of two colorectal cancer peripheral blood mRNA biomarkers: a pilot study. Iran Biomed J. 2013;17(1):15–21. doi: 10.6091/IBJ.1104.2012.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Yan B, Wang Z-H, Guo J-T. The research strategies for probing the function of long noncoding RNAs. Genomics. 2012;99(2):76–80. doi: 10.1016/j.ygeno.2011.12.002.PubMedCrossRefGoogle Scholar
  41. 41.
    Feng Y, Hu X, Zhang Y, Zhang D, Li C, Zhang L. Methods for the study of long noncoding RNA in cancer cell signaling. Methods Mol Biol. 2014;1165:115–43. doi: 10.1007/978-1-4939-0856-1_10.
  42. 42.
    Gutschner T, Diederichs S. The hallmarks of cancer: a long non-coding RNA point of view. RNA Biol. 2012;9(6):703–19. doi: 10.4161/rna.20481.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Klecka J, Holubec L, Pesta M, Pesta M, Topolcan O, Topolcan O, et al. Differential display code 3 (DD3/PCA3) in prostate cancer diagnosis. Anticancer Res. 2010;30(2):665–70.PubMedGoogle Scholar
  44. 44.
    Moradi Sardareh H, Goodarzi MT, Yadegar-Azari R, Poorolajal J, Mousavi-Bahar SH, Saidijam M. Prostate cancer antigen 3 gene expression in peripheral blood and urine sediments from prostate cancer and benign prostatic hyperplasia patients versus healthy individuals. Urol J. 2014;11(6):1952–8.PubMedGoogle Scholar
  45. 45.
    Zhang Z, Peng Z, Olsen D, de Kay J, Weaver DL, Evans MF. Abstract 1498: long non-coding RNA in situ hybridization signal patterns correlate with breast tumor pathology. Cancer Res. 2014;74(19 Supplement):1498. doi: 10.1158/1538-7445.am2014-1498.CrossRefGoogle Scholar
  46. 46.
    Zhang L, Song X, Wang X, Xie Y, Wang Z, Xu Y, et al. Circulating DNA of HOTAIR in serum is a novel biomarker for breast cancer. Breast Cancer Res Treat. 2015;152(1):199–208.PubMedCrossRefGoogle Scholar
  47. 47.
    Xu N, Chen F, Wang F, Lu X, Wang X, Lv M, et al. Clinical significance of high expression of circulating serum lncRNA RP11-445H22.4 in breast cancer patients: a Chinese population-based study. Tumor Biol. 2015;1–7. doi: 10.1007/s13277-015-3469-0.
  48. 48.
    Iacoangeli A, Lin Y, Morley EJ, Muslimov IA, Bianchi R, Reilly J, et al. BC200 RNA in invasive and preinvasive breast cancer. Carcinogenesis. 2004;25(11):2125–33. doi: 10.1093/carcin/bgh228.PubMedCrossRefGoogle Scholar
  49. 49.
    Xu S-P, Zhang J-F, Sui S-Y, Bai N-X, Gao S, Zhang G-W, et al. Downregulation of the long noncoding RNA EGOT correlates with malignant status and poor prognosis in breast cancer. Tumor Biol. 2015;1–6. doi: 10.1007/s13277-015-3746-y.
  50. 50.
    Shen Y, Katsaros D, Loo LWM, Hernandez BY, Chong C, Canuto EM, et al. Prognostic and predictive values of long non-coding RNA LINC00472 in breast cancer. Oncotarget. 2015;6(11):8579–92.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Nguyen Q, Carninci P. Expression specificity of disease-associated lncRNAs: toward personalized medicine. Current topics in microbiology and immunology. Berlin: Springer; 2015. p. 1–22.Google Scholar
  52. 52.
    Redis RS, Sieuwerts AM, Look MP, Tudoran O, Ivan C, Spizzo R, et al. CCAT2, a novel long non-coding RNA in breast cancer: expression study and clinical correlations. Oncotarget. 2013;4(10):1748–62.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Pickard M, Williams G. Regulation of apoptosis by long non-coding RNA GAS5 in breast cancer cells: implications for chemotherapy. Breast Cancer Res Treat. 2014;145(2):359–70. doi: 10.1007/s10549-014-2974-y.PubMedCrossRefGoogle Scholar
  54. 54.
    Haemmerle M, Gutschner T. Long non-coding RNAs in cancer and development: where do we go from here? Int J Mol Sci. 2015;16(1):1395–405.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Zong X, Huang L, Tripathi V, Peralta R, Freier SM, Guo S et al. Knockdown of nuclear-retained long noncoding RNAs using modified DNA antisense oligonucleotides. Methods Mol Biol. 2015;1262:321–31. doi: 10.1007/978-1-4939-2253-6_20.
  56. 56.
    Gutschner T, Hämmerle M, Eißmann M, Hsu J, Kim Y, Hung G, et al. The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Res. 2013;73(3):1180–9. doi: 10.1158/0008-5472.can-12-2850.PubMedCrossRefGoogle Scholar
  57. 57.
    Engstrom PF, Bloom MG, Demetri GD, Febbo PG, Goeckeler W, Ladanyi M, et al. NCCN molecular testing white paper: effectiveness, efficiency, and reimbursement. J Natl Compr Cancer Netw. 2011;9 Suppl 6:S-1–16.Google Scholar
  58. 58.
    Ramskold D, Luo S, Wang Y-C, Li R, Deng Q, Faridani OR, et al. Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nat Biotechnol. 2012;30(8):777–82. http://www.nature.com/nbt/journal/v30/n8/abs/nbt.2282.html#supplementary-information.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Ling H, Vincent K, Pichler M, Fodde R, Berindan-Neagoe I, Slack FJ, et al. Junk DNA and the long non-coding RNA twist in cancer genetics. Oncogene. 2015;34(39):5003–11. doi: 10.1038/onc.2014.456.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Fatemi RP, Velmeshev D, Faghihi MA. De-repressing LncRNA-targeted genes to upregulate gene expression: focus on small molecule therapeutics. Mol Ther Nucleic Acids. 2014;3:e196. doi: 10.1038/mtna.2014.45.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Pedram Fatemi R, Salah-Uddin S, Modarresi F, Khoury N, Wahlestedt C, Faghihi MA. Screening for small-molecule modulators of long noncoding RNA-protein interactions using AlphaScreen. J Biomol Screen. 2015;20(9):1132–41. doi: 10.1177/1087057115594187.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Whitehead KA, Langer R, Anderson DG. Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov. 2009;8(2):129–38.PubMedCrossRefGoogle Scholar
  63. 63.
    Qi P, Du X. The long non-coding RNAs, a new cancer diagnostic and therapeutic gold mine. Mod Pathol. 2013;26(2):155–65.PubMedCrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  1. 1.Department of Molecular Medicine and Genetics, School of MedicineHamadan University of Medical SciencesHamadanIran
  2. 2.Research Center for Molecular MedicineHamadan University of Medical SciencesHamadanIran
  3. 3.Department of Health and Community Medicine, Faculty of MedicineShahid Beheshti University of Medical SciencesTehranIran

Personalised recommendations