Advertisement

Tumor Biology

, Volume 37, Issue 6, pp 7193–7201 | Cite as

Effect of HPV on tumor expression levels of the most commonly used markers in HNSCC

  • Hana Polanska
  • Zbynek Heger
  • Jaromir Gumulec
  • Martina Raudenska
  • Marketa Svobodova
  • Jan Balvan
  • Michaela Fojtu
  • Hana Binkova
  • Zuzana Horakova
  • Rom Kostrica
  • Vojtech Adam
  • Rene Kizek
  • Michal Masarik
Original Article

Abstract

Approximately 90 % of head and neck cancers are squamous cell carcinomas (HNSCC), and the overall 5-year survival rate is not higher than 50 %. There is much evidence that human papillomavirus (HPV) infection may influence the expression of commonly studied HNSCC markers. Our study was focused on the possible HPV-specificity of molecular markers that could be key players in important steps of cancerogenesis (MKI67, EGF, EGFR, BCL-2, BAX, FOS, JUN, TP53, MT1A, MT2A, VEGFA, FLT1, MMP2, MMP9, and POU5F). qRT-PCR analysis of these selected genes was performed on 74 biopsy samples of tumors from patients with histologically verified HNSCC (22 HPV–, 52 HPV+). Kaplan-Meier analysis was done to determine the relevance of these selected markers for HNSCC prognosis. In conclusion, our study confirms the impact of HPV infection on commonly studied HNSCC markers MT2A, MMP9, FLT1, VEGFA, and POU5F that were more highly expressed in HPV-negative HNSCC patients and also shows the relevance of studied markers in HPV-positive and HPV-negative HNSCC patients.

Keywords

Head and neck cancer Human papillomavirus Tumor markers Kaplan-Meier analysis 

Notes

Acknowledgments

This work was supported by the Ministry of Health of the Czech Republic IGA MZ NT 14337-3/2013 and by Specific University Research Grants—MUNI/A/1549/2014 and MUNI/A/1326/2014 provided by the Ministry of Education, Youth and Sports of the Czech Republic in the year 2015.

Compliance with ethical standards

Conflicts of interest

None

Supplementary material

13277_2015_4569_MOESM1_ESM.pdf (180 kb)
Online resource 1 Sequences of primers used for HPV identification. (PDF 180 kb)
13277_2015_4569_MOESM2_ESM.pdf (10 kb)
Online resource 2 Effect of most common high-risk HPV16 and HPV18 status on tissue gene expression. Results of statistical analysis. Displayed as a gene expression fold change (95 % confidence interval) compared to HPV-negative samples. (PDF 10 kb)
13277_2015_4569_MOESM3_ESM.pdf (43 kb)
Online resource 3 Correlation between genes (co-expression pattern) in HPV-positive and HPV-negative cohort. Data shown as correlation coefficient and its corresponding p-level. (PDF 43 kb)

References

  1. 1.
    Kim L, King T, Agulnik M. Head and neck cancer: changing epidemiology and public health implications. Oncol-New York. 2010;24(10):915–24.Google Scholar
  2. 2.
    Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. Ca-a Cancer J Clin. 2015;65(2):87–108. doi: 10.3322/caac.21262.CrossRefGoogle Scholar
  3. 3.
    Syrjanen K, Syrjanen S, Lamberg M, Pyrhonen S, Nuutinen J. Morphological and immunohistochemical evidence suggesting human papillomavirus (HPV) involvement in oral squamous-cell carcinogenesis. Int J Oral Surg. 1983;12(6):418–24. doi: 10.1016/s0300-9785(83)80033-7.CrossRefPubMedGoogle Scholar
  4. 4.
    Marur S, D’Souza G, Westra WH, Forastiere AA. HPV-associated head and neck cancer: a virus-related cancer epidemic. Lancet Oncol. 2010;11(8):781–9. doi: 10.1016/s1470-2045(10)70017-6.CrossRefPubMedGoogle Scholar
  5. 5.
    Slebos RJC, Yi YJ, Ely K, Carter J, Evjen A, Zhang XQ, et al. Gene expression differences associated with human papillomavirus status in head and neck squamous cell carcinoma. Clin Cancer Res. 2006;12(3):701–9. doi: 10.1158/1078-0432.ccr-05-2017.CrossRefPubMedGoogle Scholar
  6. 6.
    Haedicke J, Iftner T. Human papillomaviruses and cancer. Radiother Oncol. 2013;108(3):397–402. doi: 10.1016/j.radonc.2013.06.004.CrossRefPubMedGoogle Scholar
  7. 7.
    Kreimer AR, Clifford GM, Boyle P, Franceschi S. Human papillomavirus types in head and neck squamous cell carcinomas worldwide: a systematic review. Cancer Epidemiol Biomark Prev. 2005;14(2):467–75. doi: 10.1158/1055-9965.epi-04-0551.CrossRefGoogle Scholar
  8. 8.
    Ajiro M, Zheng Z-M. Oncogenes and RNA splicing of human tumor viruses. Emerging Microbes Infect. 2014;3:e63. doi: 10.1038/emi.2014.62.CrossRefGoogle Scholar
  9. 9.
    Polanska H, Raudenska M, Gumulec J, Sztalmachova M, Adam V, Kizek R, et al. Clinical significance of head and neck squamous cell cancer biomarkers. Oral Oncol. 2014;50(3):168–77. doi: 10.1016/j.oraloncology.2013.12.008.CrossRefPubMedGoogle Scholar
  10. 10.
    Mantovani F, Banks L. The human papillomavirus E6 protein and its contribution to malignant progression. Oncogene. 2001;20(54):7874–87. doi: 10.1038/sj.onc.1204869.CrossRefPubMedGoogle Scholar
  11. 11.
    Braakhuis BJM, Snijders PJF, Keune WJH, Meijer C, Ruijter-Schippers HJ, Leemans CR, et al. Genetic patterns in head and neck cancers that contain or lack transcriptionally active human papillomavirus. J Natl Cancer Inst. 2004;96(13):998–1006. doi: 10.1093/jnci/djh183.CrossRefPubMedGoogle Scholar
  12. 12.
    Jo S, Juhasz A, Zhang K, Ruel C, Loera S, Wilczynski SP, et al. Human papillomavirus infection as a prognostic factor in oropharyngeal squamous cell carcinomas treated in a prospective phase II clinical trial. Anticancer Res. 2009;29(5):1467–74.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Ritchie JM, Smith EM, Summersgill KF, Hoffman HT, Wang DH, Klussmann JP, et al. Human papillomavirus infection as a prognostic factor in carcinomas of the oral cavity and oropharynx. Int J Cancer. 2003;104(3):336–44. doi: 10.1002/ijc.10960.CrossRefPubMedGoogle Scholar
  14. 14.
    Lajer CB, von Buchwald C. The role of human papillomavirus in head and neck cancer. APMIS. 2010;118(6-7):510–9. doi: 10.1111/j.1600-0463.2010.02624.x.CrossRefPubMedGoogle Scholar
  15. 15.
    D’Souza G, Kreimer AR, Viscidi R, Pawlita M, Fakhry C, Koch WM, et al. Case-control study of human papillomavirus and oropharyngeal cancer. N Engl J Med. 2007;356(19):1944–56. doi: 10.1056/NEJMoa065497.CrossRefPubMedGoogle Scholar
  16. 16.
    Gillison ML, D’Souza G, Westra W, Sugar E, Xiao WH, Begum S, et al. Distinct risk factor profiles for human papillomavirus type 16-positive and human papillomavirus type 16-negative head and neck cancers. J Natl Cancer Inst. 2008;100(6):407–20. doi: 10.1093/jnci/djn025.CrossRefPubMedGoogle Scholar
  17. 17.
    Nasman A, Attner P, Hammarstedt L, Do J, Eriksson M, Giraud G, et al. Incidence of human papillomavirus (HPV) positive tonsillar carcinoma in Stockholm, Sweden: an epidemic of viral-induced carcinoma? Int J Cancer. 2009;125(2):362–6. doi: 10.1002/ijc.24339.CrossRefPubMedGoogle Scholar
  18. 18.
    Kim K-Y, Zhang X, Cha I-H. Identification of human papillomavirus status specific biomarker in head and neck cancer. Head Neck-J Sci Spec Head Neck. 2015;37(9):1310–8. doi: 10.1002/hed.23751.CrossRefGoogle Scholar
  19. 19.
    Schlecht NF, Burk RD, Adrien L, Dunne A, Kawachi N, Sarta C, et al. Gene expression profiles in HPV-infected head and neck cancer. J Pathol. 2007;213(3):283–93. doi: 10.1002/path.2227.CrossRefPubMedGoogle Scholar
  20. 20.
    Ang KK, Sturgis EM. Human papillomavirus as a marker of the natural history and response to therapy of head and neck squamous cell carcinoma. Semin Radiat Oncol. 2012;22(2):128–42. doi: 10.1016/j.semradonc.2011.12.004.CrossRefPubMedGoogle Scholar
  21. 21.
    Hong AM, Dobbins TA, Lee CS, Jones D, Harnett GB, Armstrong BK, et al. Human papillomavirus predicts outcome in oropharyngeal cancer in patients treated primarily with surgery or radiation therapy. Br J Cancer. 2010;103(10):1510–7. doi: 10.1038/sj.bjc.6605944.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Salazar CR, Anayannis N, Smith RV, Wang YH, Haigentz M, Garg M, et al. Combined P16 and human papillomavirus testing predicts head and neck cancer survival. Int J Cancer. 2014;135(10):2404–12. doi: 10.1002/ijc.28876.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Ukpo OC, Flanagan JJ, Ma XJ, Luo YL, Thorstad WL, Lewis JS. High-risk human papillomavirus E6/E7 mRNA detection by a novel in situ hybridization assay strongly correlates with p16 expression and patient outcomes in oropharyngeal squamous cell carcinoma. Am J Surg Pathol. 2011;35(9):1343–50. doi: 10.1097/PAS.0b013e318220e59d.CrossRefPubMedGoogle Scholar
  24. 24.
    Morshed K, Polz-Dacewicz M, Szymanski M, Polz D. Short-fragment PCR assay for highly sensitive broad-spectrum detection of human papillomaviruses in laryngeal squamous cell carcinoma and normal mucosa: clinico-pathological evaluation. Eur Arch Otorhinolaryngol. 2008;265:S89–96. doi: 10.1007/s00405-007-0569-5.CrossRefPubMedGoogle Scholar
  25. 25.
    Ryu CH, Ryu J, Cho KH, Moon SH, Yun T, Lee SH, et al. Human papillomavirus-related cell cycle markers can predict survival outcomes following a transoral lateral oropharyngectomy for tonsillar squamous cell carcinoma. J Surg Oncol. 2014;110(4):393–9. doi: 10.1002/jso.23672.CrossRefPubMedGoogle Scholar
  26. 26.
    Simonato LE, Garcia JF, Sundefeld M, Mattar NJ, Veronese LA, Miyahara GI. Detection of HPV in mouth floor squamous cell carcinoma and its correlation with clinicopathologic variables, risk factors and survival. J Oral Pathol Med. 2008;37(10):593–8. doi: 10.1111/j.1600-0714.2008.00704.x.CrossRefPubMedGoogle Scholar
  27. 27.
    Sugiyama M, Bhawal UK, Kawamura M, Ishioka Y, Shigeishi H, Higashikawa K, et al. Human papillomavirus-16 in oral squamous cell carcinoma: clinical correlates and 5-year survival. Br J Oral Maxillofac Surg. 2007;45(2):116–22. doi: 10.1016/j.bjoms.2006.04.012.CrossRefPubMedGoogle Scholar
  28. 28.
    Westra WH, Taube JM, Poeta ML, Begum S, Sidransky D, Koch WM. Inverse relationship between human papillomavirus-16 infection and disruptive p53 gene mutations in squamous cell carcinoma of the head and neck. Clin Cancer Res. 2008;14(2):366–9. doi: 10.1158/1078-0432.ccr-07-1402.CrossRefPubMedGoogle Scholar
  29. 29.
    Park JW, Nickel KP, Torres AD, Lee D, Lambert PF, Kimple RJ. Human papillomavirus type 16 E7 oncoprotein causes a delay in repair of DNA damage. Radiother Oncol. 2014;113(3):337–44. doi: 10.1016/j.radonc.2014.08.026.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Blons H, Laurent-Puig P. TP53 and head and neck neoplasms. Hum Mutat. 2003;21(3):252–7. doi: 10.1002/humu.10171.CrossRefPubMedGoogle Scholar
  31. 31.
    Boyle JO, Hakim J, Koch W, Vanderriet P, Hruban RH, Roa RA, et al. The incidence of p53 mutations increases with progression of head and neck-cancer. Cancer Res. 1993;53(19):4477–80.PubMedGoogle Scholar
  32. 32.
    Cairns P, Polascik TJ, Eby Y, Tokino K, Califano J, Merlo A, et al. Frequency of homozygous deletion at P16/CDKN2 in primary human tumors. Nat Genet. 1995;11(2):210–2. doi: 10.1038/ng1095-210.CrossRefPubMedGoogle Scholar
  33. 33.
    Bode W, Fernandez-Catalan C, Tschesche H, Grams F, Nagase H, Maskos K. Structural properties of matrix metalloproteinases. Cell Mol Life Sci. 1999;55(4):639–52. doi: 10.1007/s000180050320.CrossRefPubMedGoogle Scholar
  34. 34.
    Bjorklund M, Koivunen E. Gelatinase-mediated migration and invasion of cancer cells. Biochim Et Biophys Acta-Rev Cancer. 2005;1755(1):37–69. doi: 10.1016/j.bbcan.2005.03.001.CrossRefGoogle Scholar
  35. 35.
    Bindhu OS, Ramadas K, Sebastian P, Pillai MR. High expression levels of nuclear factor kappa B and gelatinases in the tumorigenesis of oral squamous cell carcinoma. Head Neck-J Sci Spec Head Neck. 2006;28(10):916–25. doi: 10.1002/hed.20437.CrossRefGoogle Scholar
  36. 36.
    Chen CH, Chien CY, Huang CC, Hwang CF, Chuang HC, Fang FM, et al. Expression of FLJ10540 is correlated with aggressiveness of oral cavity squamous cell carcinoma by stimulating cell migration and invasion through increased FOXM1 and MMP-2 activity. Oncogene. 2009;28(30):2723–37. doi: 10.1038/onc.2009.128.CrossRefPubMedGoogle Scholar
  37. 37.
    Ruokolainen H, Paakko P, Turpeenniemi-Hujanen T. Expression of matrix metalloproteinase-9 in head and neck squamous cell carcinoma: a potential marker for prognosis. Clin Cancer Res. 2004;10(9):3110–6. doi: 10.1158/1078-0432.ccr-03-0530.CrossRefPubMedGoogle Scholar
  38. 38.
    Thomas GT, Lewis MP, Speight PM. Matrix metalloproteinases and oral cancer. Oral Oncol. 1999;35(3):227–33. doi: 10.1016/s1368-8375(99)00004-4.CrossRefPubMedGoogle Scholar
  39. 39.
    Hishikawa Y, Koji T, Dhar DK, Kinugasa S, Yamaguchi M, Nagasue N. Metallothionein expression correlates with metastatic and proliferative potential in squamous cell carcinoma of the oesophagus. Br J Cancer. 1999;81(4):712–20. doi: 10.1038/sj.bjc.6690753.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Raudenska M, Gumulec J, Podlaha O, Sztalmachova M, Babula P, Eckschlager T, et al. Metallothionein polymorphisms in pathological processes. Metallomics. 2014;6(1):55–68. doi: 10.1039/c3mt00132f.CrossRefPubMedGoogle Scholar
  41. 41.
    Gumulec J, Raudenska M, Adam V, Kizek R, Masarik M. Metallothionein-immunohistochemical cancer biomarker: a meta-analysis. PLos One. 2014;9(1):e85346. doi: 10.1371/journal.pone.0085346.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Cui YP, Wang JB, Zhang XY, Lang RG, Bi MX, Guo LP, et al. ECRG2, a novel candidate of tumor suppressor gene in the esophageal carcinoma, interacts directly with metallothionein 2A and links to apoptosis. Biochem Biophys Res Commun. 2003;302(4):904–15. doi: 10.1016/s006-291x(03)00122-0.CrossRefPubMedGoogle Scholar
  43. 43.
    Raudenska M, Sztalmachova M, Gumulec J, Fojtu M, Polanska H, Balvan J, et al. Prognostic significance of the tumour-adjacent tissue in head and neck cancers. Tumour Biol. 2015. doi: 10.1007/s13277-015-3755-x.Google Scholar
  44. 44.
    Ostrakhovitch EA, Olsson PE, Jiang S, Cherian MG. Interaction of metallothionein with tumor suppressor p53 protein. FEBS Lett. 2006;580(5):1235–8. doi: 10.1016/j.febslet.2006.01.036.CrossRefPubMedGoogle Scholar
  45. 45.
    Kim HG, Kim JY, Han EH, Hwang YP, Choi JH, Park BH, et al. Metallothionein-2A overexpression increases the expression of matrix metalloproteinase-9 and invasion of breast cancer cells. FEBS Lett. 2011;585(2):421–8. doi: 10.1016/j.febslet.2010.12.030.CrossRefPubMedGoogle Scholar
  46. 46.
    Van Limbergen EJ, Zabrocki P, Porcu M, Hauben E, Cools J, Nuyts S. FLT1 kinase is a mediator of radioresistance and survival in head and neck squamous cell carcinoma. Acta Oncol. 2014;53(5):637–45. doi: 10.3109/0284186x.2013.835493.CrossRefPubMedGoogle Scholar
  47. 47.
    Wang J, Kuiatse I, Lee AV, Pan J, Giuliano A, Cui X. Sustained c-Jun-NH2-Kinase activity promotes epithelial-mesenchymal transition, invasion, and survival of breast cancer cells by regulating extracellular signal-regulated kinase activation. Mol Cancer Res. 2010;8(2):266–77. doi: 10.1158/1541-7786.mcr-09-0221.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Nagel R, Martens-de Kemp SR, Buijze M, Jacobs G, Braakhuis BJ, Brakenhoff RH. Treatment response of HPV-positive and HPV-negative head and neck squamous cell carcinoma cell lines. Oral Oncol. 2013;49(6):560–6. doi: 10.1016/j.oraloncology.2013.03.446.CrossRefPubMedGoogle Scholar
  49. 49.
    Major AG, Pitty LP, Farah CS. Cancer stem cell markers in head and neck squamous cell carcinoma. Stem Cells International. 2013. Unsp 319489. doi: 10.1155/2013/319489.
  50. 50.
    Tsai L-L, Hu F-W, Lee S-S, Yu C-H, Yu C-C, Chang Y-C. Oct4 mediates tumor initiating properties in oral squamous cell carcinomas through the regulation of epithelial-mesenchymal transition. Plos One. 2014;9(1):e87207. doi: 10.1371/journal.pone.0087207.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Liu D, Zhou P, Zhang L, Wu G, Zheng Y, He F. Differential expression of Oct4 in HPV-positive and HPV-negative cervical cancer cells is not regulated by DNA methyltransferase 3A. Tumour Biol. 2011;32(5):941–50. doi: 10.1007/s13277-011-0196-z.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Hana Polanska
    • 1
  • Zbynek Heger
    • 2
    • 3
  • Jaromir Gumulec
    • 1
  • Martina Raudenska
    • 1
  • Marketa Svobodova
    • 1
  • Jan Balvan
    • 1
  • Michaela Fojtu
    • 4
  • Hana Binkova
    • 5
  • Zuzana Horakova
    • 5
  • Rom Kostrica
    • 5
  • Vojtech Adam
    • 2
    • 3
  • Rene Kizek
    • 2
    • 3
  • Michal Masarik
    • 1
    • 3
  1. 1.Department of Pathological Physiology, Faculty of MedicineMasaryk UniversityBrnoCzech Republic
  2. 2.Department of Chemistry and BiochemistryMendel University in BrnoBrnoCzech Republic
  3. 3.Central European Institute of TechnologyBrno University of TechnologyBrnoCzech Republic
  4. 4.Department of Physiology, Faculty of MedicineMasaryk UniversityBrnoCzech Republic
  5. 5.Department of Otorhinolaryngology and Head and Neck SurgerySt. Anne’s Faculty HospitalBrnoCzech Republic

Personalised recommendations