Tumor Biology

, Volume 37, Issue 5, pp 6855–6860 | Cite as

RETRACTED ARTICLE: MicroRNA-144 mediates metabolic shift in ovarian cancer cells by directly targeting Glut1

  • Jia-Ying Fan
  • Yan Yang
  • Jing-Ying Xie
  • Yan-Ling Lu
  • Kun Shi
  • Yan-Qing Huang
Original Article

Abstract

Warburg effect is characterized by an increased utilization of glucose via glycolysis in cancer cells, even when enough oxygen is present to properly respire. Recent studies demonstrate that deregulation of microRNAs contributes to the Warburg effect. In the present study, we show that miR-144 is downregulated while glucose transporter 1 (Glut1) is upregulated in ovarian cancers. In vitro studies further showed that miR-144 inhibits Glut1 expression through targeting its 3′-untranslated region. As a result, cells overexpressing miR-144 exhibited a metabolic shift, including enhanced glucose uptake and lactate production. The altered glucose metabolism induced by miR-144 also leads to a rapid growth of ovarian cancer cells. Taken together, our results indicate that miR-144 may serve as a molecular switch to regulate glycolysis in ovarian cancer by targeting the expression of Glut1.

Keywords

Glut1 MicroRNA-144 Ovarian cancer Warburg effect 

Notes

Compliance with ethical standards

Conflicts of interest

None

References

  1. 1.
    Mikawa T, LLeonart ME, Takaori-Kondo A, Inagaki N, Yokode M, Kondoh H. Dysregulated glycolysis as an oncogenic event. Cell Mol Life Sci. 2015;72(10):1881–92.CrossRefPubMedGoogle Scholar
  2. 2.
    Justus CR, Sanderlin EJ, Yang LV. Molecular connections between cancer cell metabolism and the tumor microenvironment. Int J Mol Sci. 2015;16(5):11055–86.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Kellenberger LD, Bruin JE, Greenaway J, Campbell NE, Moorehead RA, Holloway AC, et al. The role of dysregulated glucose metabolism in epithelial ovarian cancer. J Oncol. 2010;2010:514310.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Koppenol WH, Bounds PL, Dang CV. Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer. 2011;11(5):325–37.CrossRefPubMedGoogle Scholar
  5. 5.
    Gonzalez CD, Alvarez S, Ropolo A, Rosenzvit C, Bagnes MF, Vaccaro MI. Autophagy, Warburg, and Warburg reverse effects in human cancer. Biomed Res Int. 2014;2014:926729.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Sawayama H, Ishimoto T, Sugihara H, Miyanari N, Miyamoto Y, Baba Y, et al. Clinical impact of the Warburg effect in gastrointestinal cancer (review). Int J Oncol. 2014;45(4):1345–54.PubMedGoogle Scholar
  7. 7.
    Icard P, Kafara P, Steyaert JM, Schwartz L, Lincet H. The metabolic cooperation between cells in solid cancer tumors. Biochim Biophys Acta. 2014;1846(1):216–25.PubMedGoogle Scholar
  8. 8.
    Foulkes WD, Priest JR, Duchaine TF. DICER1: mutations, microRNAs and mechanisms. Nat Rev Cancer. 2014;14(10):662–72.CrossRefPubMedGoogle Scholar
  9. 9.
    Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 2014;15(8):509–24.CrossRefPubMedGoogle Scholar
  10. 10.
    Wang G, Wang J, Zhao H, Wang J, Tony To SS. The role of Myc and let-7a in glioblastoma, glucose metabolism and response to therapy. Arch Biochem Biophys. 2015;580:84–92.CrossRefPubMedGoogle Scholar
  11. 11.
    Lin S, Gregory RI. MicroRNA biogenesis pathways in cancer. Nat Rev Cancer. 2015;15(6):321–33.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Shaw RJ. Glucose metabolism and cancer. Curr Opin Cell Biol. 2006;18(6):598–608.CrossRefPubMedGoogle Scholar
  13. 13.
    Rossing M, Borup R, Henao R, Winther O, Vikesaa J, Niazi O, et al. Down-regulation of microRNAs controlling tumourigenic factors in follicular thyroid carcinoma. J Mol Endocrinol. 2012;48(1):11–23.CrossRefPubMedGoogle Scholar
  14. 14.
    Guo Y, Ying L, Tian Y, Yang P, Zhu Y, Wang Z, et al. miR-144 downregulation increases bladder cancer cell proliferation by targeting EZH2 and regulating Wnt signaling. FEBS J. 2013;280(18):4531–8.CrossRefPubMedGoogle Scholar
  15. 15.
    Liu J, Xue H, Zhang J, Suo T, Xiang Y, Zhang W, et al. MicroRNA-144 inhibits the metastasis of gastric cancer by targeting MET expression. J Exp Clin Cancer Res. 2015;34:35.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Zhang LY, Ho-Fun Lee V, Wong AM, Kwong DL, Zhu YH, Dong SS, et al. MicroRNA-144 promotes cell proliferation, migration and invasion in nasopharyngeal carcinoma through repression of PTEN. Carcinogenesis. 2013;34(2):454–63.CrossRefPubMedGoogle Scholar
  17. 17.
    Zhang X, Wang X, Zhu H, Zhu C, Wang Y, Pu WT, et al. Synergistic effects of the GATA-4-mediated miR-144/451 cluster in protection against simulated ischemia/reperfusion-induced cardiomyocyte death. J Mol Cell Cardiol. 2010;49(5):841–50.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Liu L, Wang S, Chen R, Wu Y, Zhang B, Huang S, et al. Myc induced miR-144/451 contributes to the acquired imatinib resistance in chronic myelogenous leukemia cell K562. Biochem Biophys Res Commun. 2012;425(2):368–73.CrossRefPubMedGoogle Scholar
  19. 19.
    Dang CV, Kim JW, Gao P, Yustein J. The interplay between MYC and HIF in cancer. Nat Rev Cancer. 2008;8(1):51–6.CrossRefPubMedGoogle Scholar
  20. 20.
    Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nat Rev Cancer. 2011;11(2):85–95.CrossRefPubMedGoogle Scholar
  21. 21.
    Yamasaki T, Seki N, Yoshino H, Itesako T, Yamada Y, Tatarano S, et al. Tumor-suppressive microRNA-1291 directly regulates glucose transporter 1 in renal cell carcinoma. Cancer Sci. 2013;104:1411–9.CrossRefPubMedGoogle Scholar
  22. 22.
    Sun P, Hu JW, Xiong WJ, Mi J. miR-186 regulates glycolysis through Glut1 during the formation of cancer-associated fibroblasts. Asian Pac J Cancer Prev. 2014;15:4245–50.CrossRefPubMedGoogle Scholar
  23. 23.
    Chen B, Tang H, Liu X, Liu P, Yang L, Xie X, et al. miR-22 as a prognostic factor targets glucose transporter protein type 1 in breast cancer. Cancer Lett. 2015;356:410–7.CrossRefPubMedGoogle Scholar
  24. 24.
    Nie S, Li K, Huang Y, Hu Q, Gao X, Jie S. miR-495 mediates metabolic shift in glioma cells via targeting Glut1. J Craniofac Surg. 2015;26(2):e155–8.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Jia-Ying Fan
    • 1
  • Yan Yang
    • 1
  • Jing-Ying Xie
    • 1
  • Yan-Ling Lu
    • 1
  • Kun Shi
    • 1
  • Yan-Qing Huang
    • 1
  1. 1.Department of gynecology, Guangzhou Women and Children’s Medical CenterGuangzhou Medical UniversityGuangzhouChina

Personalised recommendations