Tumor Biology

, Volume 37, Issue 5, pp 6775–6785 | Cite as

Lysophosphatidic acid activates the RhoA and NF-κB through Akt/IκBα signaling and promotes prostate cancer invasion and progression by enhancing functional invadopodia formation

  • Young Sun Hwang
  • Jongsung Lee
  • Xianglan Zhang
  • Paul F. Lindholm
Original Article

Abstract

We have demonstrated previously that increased RhoA and nuclear factor (NF)-κB activities are associated with increased PC-3 prostate cancer cell invasion and that lysophosphatidic acid (LPA) significantly increases cancer invasion through RhoA and NF-κB activation. In this study, we identified the intermediate signaling molecules and specialized cell structures which are activated by LPA, resulting in enhanced cellular invasion. LPA-induced Akt and IκBα signaling pathways were necessary for RhoA and NF-κB activation, and these LPA effects were abolished by RhoA inhibition. Mice injected with PC-3 cells expressing dominant-negative RhoA N19 developed significantly less tumor growth compared with those injected with control (pcDNA 3.1). In addition, LPA treatment increased functional invadopodia formation. Activation of RhoA and NF-κB through the Akt and IκBα signaling pathway was required for LPA-stimulated gelatin degradation activity. LPA administration increased tumor growth and osteolytic lesions in a mouse xenograft model. These results indicate that LPA promotes PC-3 cell invasion by increasing functional invadopodia formation via upregulating RhoA and NF-κB signaling which contributes to prostate cancer progression. Therefore, the LPA and RhoA-NF-κB signaling axis may represent key molecular targets to inhibit prostate cancer invasion and progression.

Keywords

Lysophosphatidic acid Prostate cancer Invadopodia RhoA NF-κB 

Abbreviations

LPA

Lysophosphatidic acid

EMT

Epithelial-mesenchymal transition

ECM

Extracellular matrix

PTX

Pertussis toxin

ATX

Autotaxin

GPCRs

G protein-coupled receptors

μCT

Micro-computed tomography.

Notes

Acknowledgments

We thank Hyung-Kwan Kim (Yonsei University College of Dentistry, Korea) for his expert technical assistance with the animal studies. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2015R1D1A1A01056946).

Compliance with ethical standards

Conflicts of interest

None

References

  1. 1.
    Sung SY, Hsieh CL, Wu D, Chung LW, Johnstone PA. Tumor microenvironment promotes cancer progression, metastasis, and therapeutic resistance. Curr Probl Cancer. 2007;31:36–100.CrossRefPubMedGoogle Scholar
  2. 2.
    Li H, Wang D, Zhang H, Kirmani K, Zhao Z, Steinmetz R, et al. Lysophosphatidic acid stimulates cell migration, invasion, and colony formation as well as tumorigenesis/metastasis of mouse ovarian cancer in immunocompetent mice. Mol Cancer Ther. 2009;8:1692–701.CrossRefPubMedGoogle Scholar
  3. 3.
    Boucharaba A, Serre CM, Grès S, Saulnier-Blache JS, Bordet JC, Guglielmi J, et al. Platelet-derived lysophosphatidic acid supports the progression of osteolytic bone metastases in breast cancer. J Clin Invest. 2004;114:1714–25.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Boucharaba A, Serre CM, Guglielmi J, Bordet JC, Clézardin P, Peyruchaud O. The type 1 lysophosphatidic acid receptor is a target for therapy in bone metastases. Proc Natl Acad Sci U S A. 2006;103:9643–8.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Panupinthu N, Rogers JT, Zhao L, Solano-Flores LP, Possmayer F, Sims SM, et al. P2X7 receptors on osteoblasts couple to production of lysophosphatidic acid: a signaling axis promoting osteogenesis. J Cell Biol. 2008;181:859–71.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Mills GB, Moolenaar WH. The emerging role of lysophosphatidic acid in cancer. Nat Rev Cancer. 2003;3:582–91.CrossRefPubMedGoogle Scholar
  7. 7.
    David M, Wannecq E, Descotes F, Jansen S, Deux B, Ribeiro J, et al. Cancer cell expression of autotaxin controls bone metastasis formation in mouse through lysophosphatidic acid-dependent activation of osteoclasts. PLoS One. 2010;5:e9741.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Sedlákova I, Vávrová J, Tosner J, Hanousek L. Lysophosphatidic acid in ovarian cancer patients. Ceska Gynekol. 2006;71:312–7.PubMedGoogle Scholar
  9. 9.
    Xu Y, Shen Z, Wiper DW, Wu M, Morton RE, Elson P, et al. Lysophosphatidic acid as a potential biomarker for ovarian and other gynecologic cancers. JAMA. 1998;280:719–23.CrossRefPubMedGoogle Scholar
  10. 10.
    Hoshino D, Branch KM, Weaver AM. Signaling inputs to invadopodia and podosomes. J Cell Sci. 2013;126:2979–89.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Paz H, Pathak N, Yang J. Invading one step at a time: the role of invadopodia in tumor metastasis. Oncogene. 2014;33:4193–202.CrossRefPubMedGoogle Scholar
  12. 12.
    Harper K, Arsenault D, Boulay-Jean S, Lauzier A, Lucien F, Dubois CM. Autotaxin promotes cancer invasion via the lysophosphatidic acid receptor 4: participation of the cyclic AMP/EPAC/Rac1 signaling pathway in invadopodia formation. Cancer Res. 2010;70:4634–43.CrossRefPubMedGoogle Scholar
  13. 13.
    Liu S, Umezu-Goto M, Murph M, Lu Y, Liu W, Zhang F, et al. Expression of autotaxin and lysophosphatidic acid receptors increases mammary tumorigenesis, invasion, and metastases. Cancer Cell. 2009;15:539–50.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Hodge JC, Bub J, Kaul S, Kajdacsy-Balla A, Lindholm PF. Requirement of RhoA activity for increased nuclear factor kappaB activity and PC-3 human prostate cancer cell invasion. Cancer Res. 2003;63:1359–64.PubMedGoogle Scholar
  15. 15.
    Hwang YS, Hodge JC, Sivapurapu N, Lindholm PF. Lysophosphatidic acid stimulates PC-3 prostate cancer cell Matrigel invasion through activation of RhoA and NF-kappaB activity. Mol Carcinog. 2006;45:518–29.CrossRefPubMedGoogle Scholar
  16. 16.
    Hwang YS, Park KK, Chung WY. Kalopanaxsaponin A inhibits the invasion of human oral squamous cell carcinoma by reducing metalloproteinase-9 mRNA stability and protein trafficking. Biol Pharm Bull. 2012;35:289–300.CrossRefPubMedGoogle Scholar
  17. 17.
    Bowden ET, Coopman PJ, Mueller SC. Invadopodia: unique methods for measurement of extracellular matrix degradation in vitro. Methods Cell Biol. 2001;63:613–27.CrossRefPubMedGoogle Scholar
  18. 18.
    Sahai E, Marshall CJ. RHO-GTPases and cancer. Nat Rev Cancer. 2002;2:2133–42.CrossRefGoogle Scholar
  19. 19.
    van Corven EJ, Groenink A, Jalink K, Eichholtz T, Moolenaar WH. Lysophosphatidate-induced cell proliferation: identification and dissection of signaling pathways mediated by G proteins. Cell. 1989;59:45–54.CrossRefPubMedGoogle Scholar
  20. 20.
    Wang W, Liu Y, Liao K. Tyrosine phosphorylation of cortactin by the FAK-Src complex at focal adhesions regulates cell motility. BMC Cell Biol. 2011;12:49.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Oser M, Mader CC, Gil-Henn H, Magalhaes M, Bravo-Cordero JJ, Koleske AJ, et al. Specific tyrosine phosphorylation sites on cortactin regulate Nck1-dependent actin polymerization in invadopodia. J Cell Sci. 2010;123:3662–73.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Ozden F, Saygin C, Uzunaslan D, Onal B, Durak H, Aki H. Expression of MMP-1, MMP-9 and TIMP-2 in prostate carcinoma and their influence on prognosis and survival. J Cancer Res Clin Oncol. 2013;139:1373–82.CrossRefPubMedGoogle Scholar
  23. 23.
    Struckhoff AP, Rana MK, Worthylake RA. RhoA can lead the way in tumor cell invasion and metastasis. Front Biosci (Landmark Ed). 2011;16:1915–26.CrossRefGoogle Scholar
  24. 24.
    Lindholm PF, Bub J, Kaul S, Shidham VB, Kajdacsy-Balla A. The role of constitutive NF-kappaB activity in PC-3 human prostate cancer cell invasive behavior. Clin Exp Metastasis. 2000;18:471–9.CrossRefPubMedGoogle Scholar
  25. 25.
    Andela VB, Schwarz EM, Puzas JE, O’Keefe RJ, Rosier RN. Tumor metastasis and the reciprocal regulation of prometastatic and antimetastatic factors by nuclear factor kappaB. Cancer Res. 2000;60:6557–62.PubMedGoogle Scholar
  26. 26.
    Dong G, Chen Z, Kato T, Van Waes C. The host environment promotes the constitutive activation of nuclear factor-kappaB and proinflammatory cytokine expression during metastatic tumor progression of murine squamous cell carcinoma. Cancer Res. 1999;59:3495–504.PubMedGoogle Scholar
  27. 27.
    Sovak MA, Bellas RE, Kim DW, Zanieski GJ, Rogers AE, Traish AM, et al. Aberrant nuclear factor-kappaB/Rel expression and the pathogenesis of breast cancer. J Clin Invest. 1997;100:2952–60.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Huang S, Pettaway CA, Uehara H, Bucana CD, Fidler IJ. Blockade of NF-kappaB activity in human prostate cancer cells is associated with suppression of angiogenesis, invasion, and metastasis. Oncogene. 2001;20:4188–97.CrossRefPubMedGoogle Scholar
  29. 29.
    Dozmorov MG, Hurst RE, Culkin DJ, Kropp BP, Frank MB, Osban J, et al. Unique patterns of molecular profiling between human prostate cancer LNCaP and PC-3 cells. Prostate. 2009;69:1077–90.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Matsumoto Y, Tanaka K, Harimaya K, Nakatani F, Matsuda S, Iwamoto Y. Small GTP-binding protein, Rho, both increased and decreased cellular motility, activation of matrix metalloproteinase 2 and invasion of human osteosarcoma cells. Jpn J Cancer Res. 2001;92:429–38.CrossRefPubMedGoogle Scholar
  31. 31.
    Montaner S, Perona R, Saniger L, Lacal JC. Activation of serum response factor by RhoA is mediated by the nuclear factor-kappaB and C/EBP transcription factors. J Biol Chem. 1999;274:8506–15.CrossRefPubMedGoogle Scholar
  32. 32.
    Sibony-Benyamini H, Gil-Henn H. Invadopodia: the leading force. Eur J Cell Biol. 2012;91:896–901.CrossRefPubMedGoogle Scholar
  33. 33.
    Mueller SC, Yeh Y, Chen WT. Tyrosine phosphorylation of membrane proteins mediates cellular invasion by transformed cells. J Cell Biol. 1992;119:1309–25.CrossRefPubMedGoogle Scholar
  34. 34.
    Desai B, Ma T, Chellaiah MA. Invadopodia and matrix degradation, a new property of prostate cancer cells during migration and invasion. J Biol Chem. 2008;283:13856–66.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    McNiven MA. Breaking away: matrix remodeling from the leading edge. Trends Cell Biol. 2013;23:16–21.CrossRefPubMedGoogle Scholar
  36. 36.
    Hasegawa Y, Murph M, Yu S, Tigyi G, Mills GB. Lysophosphatidic acid (LPA)-induced vasodilator-stimulated phosphoprotein mediates lamellipodia formation to initiate motility in PC-3 prostate cancer cells. Mol Oncol. 2008;2:54–69.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Beckmann JD, Romberger DJ, Rennard SI, Spurzem JR. Induction of bovine bronchial epithelial cell filopodia by tetradecanoyl phorbol acetate, calcium ionophore, and lysophosphatidic acid. J Cell Physiol. 1995;164:123–31.CrossRefPubMedGoogle Scholar
  38. 38.
    Radhakrishnan VM, Kojs P, Young G, Ramalingam R, Jagadish B, Mash EA, et al. pTyr421 cortactin is overexpressed in colon cancer and is dephosphorylated by curcumin: involvement of non-receptor type 1 protein tyrosine phosphatase (PTPN1). PLoS One. 2014;9:e85796.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Liu HS, Lu HH, Lui MT, Yu EH, Shen W, Chen YP, et al. Detection of copy number amplification of cyclin D1 (CCND1) and cortactin (CTTN) in oral carcinoma and oral brushed samples from areca chewers. Oral Oncol. 2009;45:1032–6.CrossRefPubMedGoogle Scholar
  40. 40.
    Luo ML, Shen XM, Zhang Y, Wei F, Xu X, Cai Y, et al. Amplification and overexpression of CTTN (EMS1) contribute to the metastasis of esophageal squamous cell carcinoma by promoting cell migration and anoikis resistance. Cancer Res. 2006;66:11690–9.CrossRefPubMedGoogle Scholar
  41. 41.
    Rothschild BL, Shim AH, Ammer AG, Kelley LC, Irby KB, Head JA, et al. Cortactin overexpression regulates actin-related protein 2/3 complex activity, motility, and invasion in carcinomas with chromosome 11q13 amplification. Cancer Res. 2006;66:8017–25.CrossRefPubMedGoogle Scholar
  42. 42.
    Heasman SJ, Ridley AJ. Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nat Rev Mol Cell Biol. 2008;9:690–701.CrossRefPubMedGoogle Scholar
  43. 43.
    Yamaguchi H, Yoshida S, Muroi E, Yoshida N, Kawamura M, Kouchi Z, et al. Phosphoinositide 3-kinase signaling pathway mediated by p110α regulates invadopodia formation. J Cell Biol. 2011;193:1275–88.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Davuluri G, Augoff K, Schiemann WP, Plow EF, Sossey-Alaoui K. WAVE3-NFκB interplay is essential for the survival and invasion of cancer cells. PLoS One. 2014;9:e110627.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Berdeaux RL, Díaz B, Kim L, Martin GS. Active Rho is localized to podosomes induced by oncogenic Src and is required for their assembly and function. J Cell Biol. 2004;166:317–23.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Hotary K, Li XY, Allen E, Stevens SL, Weiss SJ. A cancer cell metalloprotease triad regulates the basement membrane transmigration program. Genes Dev. 2006;20:2673–86.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Sakurai-Yageta M, Recchi C, Le Dez G, Sibarita JB, Daviet L, Camonis J, et al. The interaction of IQGAP1 with the exocyst complex is required for tumor cell invasion downstream of Cdc42 and RhoA. J Cell Biol. 2008;181:985–98.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Ishii I, Fukushima N, Ye X, Chun J. Lysophospholipid receptors: signaling and biology. Annu Rev Biochem. 2004;73:321–54.CrossRefPubMedGoogle Scholar
  49. 49.
    Frankel A, Mills GB. Peptide and lipid growth factors decrease cis-diamminedichloroplatinum-induced cell death in human ovarian cancer cells. Clin Cancer Res. 1996;2:1307–13.PubMedGoogle Scholar
  50. 50.
    Fang X, Schummer M, Mao M, Yu S, Tabassam FH, Swaby R, et al. Lysophosphatidic acid is a bioactive mediator in ovarian cancer. Biochim Biophys Acta. 2002;1582:257–64.CrossRefPubMedGoogle Scholar
  51. 51.
    Fishman DA, Liu Y, Ellerbroek SM, Stack MS. Lysophosphatidic acid promotes matrix metalloproteinase (MMP) activation and MMP-dependent invasion in ovarian cancer cells. Cancer Res. 2001;61:3194–9.PubMedGoogle Scholar
  52. 52.
    Sawada K, Morishige K, Tahara M, Kawagishi R, Ikebuchi Y, Tasaka K, et al. Alendronate inhibits lysophosphatidic acid-induced migration of human ovarian cancer cells by attenuating the activation of rho. Cancer Res. 2002;62:6015–20.PubMedGoogle Scholar
  53. 53.
    Jin J-K, Dayyani F, Gallick GE. Steps in prostate cancer progression that lead to bone metastasis. Int J Cancer. 2011;128:2545–61.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Li H, Zhao Z, Wei G, Yan L, Wang D, Zhang H, et al. Group VIA phospholipase A2 in both host and tumor cells is involved in ovarian cancer development. FASEB J. 2010;24:4103–16.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Li H, Zhang H, Wei G, Cai Q, Yan L, Xu Y. Tumor cell group via phospholipase A2 is involved in prostate cancer development. Prostate. 2011;71:373–84.CrossRefPubMedGoogle Scholar
  56. 56.
    Rai V, Touré F, Chitayat S, Pei R, Song F, Li Q, et al. Lysophosphatidic acid targets vascular and oncogenic pathways via RAGE signaling. J Exp Med. 2012;209:2339–50.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Grol MW, Panupinthu N, Korcok J, Sims SM, Dixon SJ. Expression, signaling, and function of P2X7 receptors in bone. Purinergic Signal. 2009;5:205–21.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Sims SM, Panupinthu N, Lapierre DM, Pereverzev A, Dixon SJ. Lysophosphatidic acid: a potential mediator of osteoblast-osteoclast signaling in bone. Biochim Biophys Acta. 1831;2013:109–16.Google Scholar
  59. 59.
    Hwang YS, Ma GT, Park KK, Chung WY. Lysophosphatidic acid stimulates osteoclast fusion through OC-STAMP and P2X7 receptor signaling. J Bone Miner Metab. 2014;32:110–22.CrossRefPubMedGoogle Scholar
  60. 60.
    Weaver AM. Invadopodia: specialized cell structures for cancer invasion. Clin Exp Metastasis. 2006;23:97–105.CrossRefPubMedGoogle Scholar
  61. 61.
    Pathak R, Delorme-Walker VD, Howell MC, Anselmo AN, White MA, Bokoch GM, et al. The microtubule-associated Rho activating factor GEF-H1 interacts with exocyst complex to regulate vesicle traffic. Dev Cell. 2012;23:397–411.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Young Sun Hwang
    • 1
  • Jongsung Lee
    • 2
  • Xianglan Zhang
    • 3
    • 4
  • Paul F. Lindholm
    • 5
  1. 1.Department of Dental Hygiene, College of Health ScienceEulji UniversitySeongnamSouth Korea
  2. 2.Department of Genetic EngineeringSungkyunkwan UniversitySuwon CitySouth Korea
  3. 3.Oral Cancer Research InstituteYonsei University College of DentistrySeoulSouth Korea
  4. 4.Department of PathologyYanbian University HospitalYanji CityChina
  5. 5.Department of PathologyNorthwestern University, Feinberg School of MedicineChicagoUSA

Personalised recommendations