Tumor Biology

, Volume 37, Issue 5, pp 6787–6799 | Cite as

Silencing of WWP2 inhibits adhesion, invasion, and migration in liver cancer cells

  • Yong Qin
  • Sheng-qian Xu
  • De-biao Pan
  • Guan-xiong Ye
  • Cheng-jun Wu
  • Shi Wang
  • Chao-jun Wang
  • Jin-yan Jiang
  • Jing Fu
Original Article


The role and clinical implication of the WWP2 E3 ubiquitin ligase in liver cancer are poorly understood. In the current study, we investigated the expression level of WWP2 and its functions in cell adhesion, invasion, and migration in liver cancer. We used real-time PCR to detect the expression of WWP2 in liver cancer and adjacent samples from the People’s Hospital of Lishui and also analyzed The Cancer Genome Atlas (TCGA) RNA-seq data by bioinformatics. Migration and invasion were detected by transwell analysis. We detected a strong WWP2 expression in tumor tissues of the People’s Hospital of Lishui, and the survival rate was significantly higher in patients with lower WWP2-expressing tumors. WWP2 small hairpin RNA (shRNA) lentivirus stably infected cells (shWWP2), Huh7, showed slower growth speed compared with scramble control-infected cells in a xenograft mouse model. Knockdown of WWP2 Huh7 and BEL-7404 cells demonstrated a reduction in adhesion, invasion, and migration. Gene set enrichment analysis (GSEA) showed that WWP2 is positively correlated to cancer-related pathways including the chemokine signaling pathway. WWP2 also regulated MMP-9, caspase-9, CXCR3, and CCR5 expression in liver cancer cells. In addition, knockdown of CXCR3 and CCR5 significantly inhibited cell proliferation, adhesion, invasion, and migration in Huh7 and BEL-7404 cells. Our data suggest that targeting of WWP2 may be a therapeutic strategy for liver cancer treatment.


Liver cancer WWP2 Carcinogenesis Chemokine signaling pathway 



This study was supported by the Project of science and technology of Zhejiang Province public welfare (2014c3316).

Compliance with ethical standards

Conflicts of interest


Supplementary material

13277_2015_4547_MOESM1_ESM.docx (13 kb)
ESM 1 (DOCX 12 kb)
13277_2015_4547_MOESM2_ESM.xls (74 kb)
ESM 2 (XLS 73 kb)
13277_2015_4547_MOESM3_ESM.xls (50 kb)
ESM 3 (XLS 49 kb)


  1. 1.
    Okuda K. Hepatocellular carcinoma. J Hepatol. 2000;32:225–37.CrossRefPubMedGoogle Scholar
  2. 2.
    del Pozo AC, López P. Management of hepatocellular carcinoma. Clin Liver Dis. 2007;11:305–21.CrossRefPubMedGoogle Scholar
  3. 3.
    Kudo M, Okanoue T. Management of hepatocellular carcinoma in Japan: consensus-based clinical practice manual proposed by the Japan Society of Hepatology. Oncology. 2007;72:2–15.CrossRefPubMedGoogle Scholar
  4. 4.
    Nakakura EK, Choti MA. Management of hepatocellular carcinoma. Oncol Huntingt. 2000;14:1085–97.Google Scholar
  5. 5.
    Huang S, He X. The role of microRNAs in liver cancer progression. Br J Cancer. 2010;104:235–40.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Aravalli RN, Steer CJ, Cressman EN. Molecular mechanisms of hepatocellular carcinoma. Hepatology. 2008;48:2047–63.CrossRefPubMedGoogle Scholar
  7. 7.
    Qian YW, Chen Y, Yang W, Fu J, Cao J, Ren YB, et al. P28(GANK) prevents degradation of Oct4 and promotes expansion of tumor-initiating cells in hepatocarcinogenesis. Gastroenterology. 2012;142:1547. e1514–58. e1514.CrossRefGoogle Scholar
  8. 8.
    Pirozzi G, McConnell SJ, Uveges AJ, Carter JM, Sparks AB, Kay BK, et al. Identification of novel human WW domain-containing proteins by cloning of ligand targets. J Biol Chem. 1997;272:14611–6.CrossRefPubMedGoogle Scholar
  9. 9.
    Xu H, Wang W, Li C, Yu H, Yang A, Wang B, et al. WWP2 promotes degradation of transcription factor OCT4 in human embryonic stem cells. Cell Res. 2009;19:561–73.CrossRefPubMedGoogle Scholar
  10. 10.
    Maddika S, Kavela S, Rani N, Palicharla VR, Pokorny JL, Sarkaria JN, et al. WWP2 is an E3 ubiquitin ligase for PTEN. Nat Cell Biol. 2011;13:728–33.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Chantry A. WWP2 ubiquitin ligase and its isoforms: new biological insight and promising disease targets. Cell Cycle. 2011;10:2437–9.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Yang Y, Liao B, Wang S, Yan B, Jin Y, Shu H-B, et al. E3 ligase WWP2 negatively regulates TLR3-mediated innate immune response by targeting TRIF for ubiquitination and degradation. Proc Natl Acad Sci. 2013;110:5115–20.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Fukumoto C, Nakashima D, Kasamatsu A, Unozawa M, Shida-Sakazume T, Higo M, et al. WWP2 is overexpressed in human oral cancer, determining tumor size and poor prognosis in patients: downregulation of WWP2 inhibits the AKT signaling and tumor growth in mice. Oncoscience. 2014;1:807.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Zou W, Chen X, Shim J-H, Huang Z, Brady N, Hu D, et al. The E3 ubiquitin ligase WWP2 regulates craniofacial development through mono-ubiquitylation of goosecoid. Nat Cell Biol. 2011;13:59–65.CrossRefPubMedGoogle Scholar
  15. 15.
    Nakamura Y, Yamamoto K, He X, Otsuki B, Kim Y, Murao H, et al. WWP2 is essential for palatogenesis mediated by the interaction between Sox9 and mediator subunit 25. Nat Commun. 2011;2:251.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    O’Hayre M, Salanga C, Handel T, Allen S. Chemokines and cancer: migration, intracellular signalling and intercellular communication in the microenvironment. Biochem J. 2008;409:635–49.CrossRefPubMedGoogle Scholar
  17. 17.
    Lazennec G, Richmond A. Chemokines and chemokine receptors: new insights into cancer-related inflammation. Trends Mol Med. 2010;16:133–44.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Rollins BJ. Inflammatory chemokines in cancer growth and progression. Eur J Cancer. 2006;42:760–7.CrossRefPubMedGoogle Scholar
  19. 19.
    Yu T, Wu Y, Helman JI, Wen Y, Wang C, Li L. CXCR4 promotes oral squamous cell carcinoma migration and invasion through inducing expression of MMP-9 and MMP-13 via the ERK signaling pathway. Mol Cancer Res. 2011;9:161–72.CrossRefPubMedGoogle Scholar
  20. 20.
    Lai K-C, Huang A-C, Hsu S-C, Kuo C-L, Yang J-S, Wu S-H, et al. Benzyl isothiocyanate (BITC) inhibits migration and invasion of human colon cancer HT29 cells by inhibiting matrix metalloproteinase-2/-9 and urokinase plasminogen (uPA) through PKC and MAPK signaling pathway. J Agric Food Chem. 2010;58:2935–42.CrossRefPubMedGoogle Scholar
  21. 21.
    Srinivas G, Anto RJ, Srinivas P, Vidhyalakshmi S, Senan VP, Karunagaran D. Emodin induces apoptosis of human cervical cancer cells through poly (ADP-ribose) polymerase cleavage and activation of caspase-9. Eur J Pharmacol. 2003;473:117–25.CrossRefPubMedGoogle Scholar
  22. 22.
    de Lemos C, Christensen JE, Nansen A, Moos T, Lu B, Gerard C, et al. Opposing effects of CXCR3 and CCR5 deficiency on CD8+ T cell-mediated inflammation in the central nervous system of virus-infected mice. J Immunol. 2005;175:1767–75.CrossRefPubMedGoogle Scholar
  23. 23.
    Subramanian A, Kuehn H, Gould J, Tamayo P, Mesirov JP. GSEA-P: a desktop application for gene set enrichment analysis. Bioinformatics. 2007;23:3251–3.CrossRefPubMedGoogle Scholar
  24. 24.
    Hu Y, Chen H-Y, Yu C-Y, Xu J, Wang J-L, Qian J, et al. A long non-coding RNA signature to improve prognosis prediction of colorectal cancer. Oncotarget. 2014;5:2230.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Xiong S, Zheng Y, Jiang P, Liu R, Liu X, Chu Y. MicroRNA-7 inhibits the growth of human non-small cell lung cancer A549 cells through targeting BCL-2. Int J Biol Sci. 2011;7:805.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Payton JE, Grieselhuber NR, Chang L-W, Murakami M, Geiss GK, Link DC, et al. High throughput digital quantification of mRNA abundance in primary human acute myeloid leukemia samples. J Clin Invest. 2009;119:1714–26.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Chen H-W, Yu S-L, Chen JJ, Li H-N, Lin Y-C, Yao P-L, et al. Anti-invasive gene expression profile of curcumin in lung adenocarcinoma based on a high throughput microarray analysis. Mol Pharmacol. 2004;65:99–110.CrossRefPubMedGoogle Scholar
  28. 28.
    Tomayko MM, Reynolds CP. Determination of subcutaneous tumor size in athymic (nude) mice. Cancer Chemother Pharmacol. 1989;24:148–54.CrossRefPubMedGoogle Scholar
  29. 29.
    Xu M, Qian G, Xie F, Shi C, Yan L, Yu L, et al. Expression of epithelial cell adhesion molecule associated with elevated ductular reactions in hepatocellar carcinoma. Clin Res Hepatol Gastroenterol. 2014;38:699–705.CrossRefPubMedGoogle Scholar
  30. 30.
    Yamada S, Utsunomiya T, Morine Y, Imura S, Ikemoto T, Arakawa Y, et al. Expressions of hypoxia-inducible factor-1 and epithelial cell adhesion molecule are linked with aggressive local recurrence of hepatocellular carcinoma after radiofrequency ablation therapy. Ann Surg Oncol. 2014;21 Suppl 3:S436–42.CrossRefPubMedGoogle Scholar
  31. 31.
    Soond SM, Smith PG, Wahl L, Swingler TE, Clark IM, Hemmings AM, et al. Novel WWP2 ubiquitin ligase isoforms as potential prognostic markers and molecular targets in cancer. Biochim Biophys Acta (BBA) Mol Basis Dis. 2013;1832:2127–35.CrossRefGoogle Scholar
  32. 32.
    Nguyen Huu NS, Ryder WDJ, Zeps N, Flasza M, Chiu M, Hanby A, et al. Tumour‐promoting activity of altered WWP1 expression in breast cancer and its utility as a prognostic indicator. J Pathol. 2008;216:93–102.CrossRefPubMedGoogle Scholar
  33. 33.
    Matsuo N, Shiraha H, Fujikawa T, Takaoka N, Ueda N, Tanaka S, et al. Twist expression promotes migration and invasion in hepatocellular carcinoma. BMC Cancer. 2009;9:240.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Fransvea E, Angelotti U, Antonaci S, Giannelli G. Blocking transforming growth factor-beta up‐regulates E‐cadherin and reduces migration and invasion of hepatocellular carcinoma cells. Hepatology. 2008;47:1557–66.CrossRefPubMedGoogle Scholar
  35. 35.
    Li N, Fu H, Tie Y, Hu Z, Kong W, Wu Y, et al. miR-34a inhibits migration and invasion by down-regulation of c-Met expression in human hepatocellular carcinoma cells. Cancer Lett. 2009;275:44–53.CrossRefPubMedGoogle Scholar
  36. 36.
    Burk U, Schubert J, Wellner U, Schmalhofer O, Vincan E, Spaderna S, et al. A reciprocal repression between ZEB1 and members of the miR‐200 family promotes EMT and invasion in cancer cells. EMBO Rep. 2008;9:582–9.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Sugiyama T, Kohara H, Noda M, Nagasawa T. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity. 2006;25:977–88.CrossRefPubMedGoogle Scholar
  38. 38.
    Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008;454:436–44.CrossRefPubMedGoogle Scholar
  39. 39.
    Dagan-Berger M, Feniger-Barish R, Avniel S, Wald H, Galun E, Grabovsky V, et al. Role of CXCR3 carboxyl terminus and third intracellular loop in receptor-mediated migration, adhesion and internalization in response to CXCL11. Blood. 2006;107:3821–31.CrossRefPubMedGoogle Scholar
  40. 40.
    Ma X, Norsworthy K, Kundu N, Rodgers WH, Gimotty PA, Goloubeva O, et al. CXCR3 expression is associated with poor survival in breast cancer and promotes metastasis in a murine model. Mol Cancer Ther. 2009;8:490–8.CrossRefPubMedGoogle Scholar
  41. 41.
    Wu Q, Dhir R, Wells A. Altered CXCR3 isoform expression regulates prostate cancer cell migration and invasion. Mol Cancer. 2012;11.Google Scholar
  42. 42.
    Velasco-Velázquez M, Jiao X, De La Fuente M, Pestell TG, Ertel A, Lisanti MP, et al. CCR5 antagonist blocks metastasis of basal breast cancer cells. Cancer Res. 2012;72:3839–50.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Yong Qin
    • 1
  • Sheng-qian Xu
    • 1
  • De-biao Pan
    • 1
  • Guan-xiong Ye
    • 1
  • Cheng-jun Wu
    • 1
  • Shi Wang
    • 1
  • Chao-jun Wang
    • 1
  • Jin-yan Jiang
    • 1
  • Jing Fu
    • 1
  1. 1.Department of Hepatobiliary SurgeryPeople’s Hospital of LishuiLishuiChina

Personalised recommendations