Tumor Biology

, Volume 37, Issue 5, pp 6831–6836 | Cite as

SphK1 promotes tumor cell migration and invasion in colorectal cancer

  • Jianting Long
  • Ying Xie
  • Junmei Yin
  • Wei Lu
  • Shi Fang
Original Article

Abstract

Colorectal cancer (CRC) is one of the most common cancers worldwide. Sphingosine kinase 1 (SphK1), which phosphorylates sphingosine to sphingosine-1-phosphate (S1P), is overexpressed in various types of cancers and may act as an oncogene in tumorigenesis. However, little is known about the role of SphK1 in CRC patients. We studied the expression of SphK1 in 85 cases of CRC tissues by immunohistochemistry, qRT-PCR, and western blot. We also evaluated the effect of SphK1 on cell proliferation and invasion by MTT and transwell invasion assay. SphK1 is overexpressed in CRC tissues and cell lines, and upregulation of SphK1 correlated significantly with the following parameters: lymph node metastasis, liver metastasis, and advanced TNM stage. SphK1 knockdown results in inhibition of cancer cell proliferation. Inhibition of CRC cell migration and invasion is also evident through reversal of EMT by increases in E-cadherin expression and decreases in vimentin expression. In conclusion, SphK1 is associated with the proliferation and invasiveness of CRC cells and the SphK1 gene may contribute to a novel therapeutic approach against CRC.

Keyword

Colorectal cancer SphK1 Proliferation Invasion EMT Targeted therapy 

Notes

Acknowledgments

This work is supported by the Science and Technology Planning Project of Guangdong Province (2013B021800284)

Compliance with ethical standards

Conflicts of interest

None

References

  1. 1.
    Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63:11–30.CrossRefPubMedGoogle Scholar
  2. 2.
    Kobayashi H, Mochizuki H, Sugihara K, Morita T, Kotake K, Teramoto T, et al. Characteristics of recurrence and surveillance tools after curative resection for colorectal cancer: a multicenter study. Surgery. 2007;141:67–75.CrossRefPubMedGoogle Scholar
  3. 3.
    Lieberman DA, Rex DK, Winawer SJ, Giardiello FM, Johnson DA, Levin TR. Guidelines for colonoscopy surveillance after screening and polypectomy: a consensus update by the US Multi-Society Task Force on colorectal cancer. Gastroenterology. 2012;143:844–57.CrossRefPubMedGoogle Scholar
  4. 4.
    Toiyama Y, Hur K, Tanaka K, Inoue Y, Kusunoki M, Boland CR. Serum miR-200c is a novel prognostic and metastasis-predictive biomarker in patients with colorectal cancer. Ann Surg. 2014;259(4):735–43.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Shimada H, Tanaka K, Endou I, Ichikawa Y. Treatment for colorectal liver metastases: a review. Langenbecks Arch Surg. 2009;394:973–83.CrossRefPubMedGoogle Scholar
  6. 6.
    Zhang H, Wang Q, Zhao Q, Di W. MiR-124 inhibits the migration and invasion of ovarian cancer cells by targeting SphK1. J Ovarian Res. 2013;6(1):84.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Yang YL, Ji C, Cheng L, He L, Lu CC, Wang R, et al. Sphingosine kinase-1 inhibition sensitizes curcumin-induced growth inhibition and apoptosis in ovarian cancer cells. Cancer Sci. 2012;103(8):1538–45.CrossRefPubMedGoogle Scholar
  8. 8.
    Santulli P, Marcellin L, Noël JC, Borghese B, Fayt I, Vaiman D, et al. Sphingosine pathway deregulation in endometriotic tissues. Fertil Steril. 2012;97(4):904–11.CrossRefPubMedGoogle Scholar
  9. 9.
    Datta A, Loo SY, Huang B, Wong L, Tan SS, Tan TZ, et al. SPHK1 regulates proliferation and survival responses in triple-negative breast cancer. Oncotarget. 2014;5(15):5920–33.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Wang Y, Tang Q, Li M, Jiang S, Wang X. MicroRNA-375 inhibits colorectal cancer growth by targeting PIK3CA. Biochem Biophys Res Commun. 2014;444:199–204.CrossRefPubMedGoogle Scholar
  11. 11.
    Van Cutsem E, Nordlinger B, Adam R, K€ohne CH, Pozzo C, Poston G. Towards a pan-European consensus on the treatment of patients with colorectal liver metastases. Eur J Cancer. 2006;42:2212–21.CrossRefPubMedGoogle Scholar
  12. 12.
    Meng XD, Zhou ZS, Qiu JH, Shen WH, Wu Q, Xiao J. Increased SPHK1 expression is associated with poor prognosis in bladder cancer. Tumour Biol. 2014;35(3):2075–80.CrossRefPubMedGoogle Scholar
  13. 13.
    Lu Z, Zhang W, Gao S, Jiang Q, Xiao Z, Ye L, et al. MiR-506 suppresses liver cancer angiogenesis through targeting sphingosine kinase 1 (SPHK1) mRNA. Biochem Biophys Res Commun. 2015;468(1–2):8–13.CrossRefPubMedGoogle Scholar
  14. 14.
    Shi J, He YY, Sun JX, Guo WX, Li N, Xue J, et al. The impact of sphingosine kinase 1 on the prognosis of hepatocellular carcinoma patients with portal vein tumor thrombus. Ann Hepatol. 2015;14(2):198–206.PubMedGoogle Scholar
  15. 15.
    Lufrano M, Jacob A, Zhou M, Wang P. Sphingosine kinase-1 mediates endotoxemia-induced hyperinflammation in aged animals. Mol Med Rep. 2013;8(2):645–9.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Karimian G, Buist-Homan M, Schmidt M, Tietge UJ, de Boer JF, Klappe K, et al. Sphingosine kinase-1 inhibition protects primary rat hepatocytes against bile salt-induced apoptosis. Biochim Biophys Acta. 2013;1832(12):1922–9.CrossRefPubMedGoogle Scholar
  17. 17.
    Fidler IJ, Hart IR. Biological diversity in metastatic neoplasms: origins and implications. Science. 1982;217:998–1003.CrossRefPubMedGoogle Scholar
  18. 18.
    Liotta LA, Steeq PS, Stetler-Stevenson WG. Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell. 1991;64:327–36.CrossRefPubMedGoogle Scholar
  19. 19.
    Guillermet-Guibert J, Davenne L, Pchejetski D, Saint-Laurent N, Brizuela L, Guilbeau-Frugier C, et al. Targeting the sphingolipid metabolism to defeat pancreatic cancer cell resistance to the chemotherapeutic gemcitabine drug. Mol Cancer Ther. 2009;8(4):809–20.CrossRefPubMedGoogle Scholar
  20. 20.
    Vettorazzi S, Bode C, Dejager L, Frappart L, Shelest E, Klaßen C, et al. Glucocorticoids limit acute lung inflammation in concert with inflammatory stimuli by induction of SphK1. Nat Commun. 2015;6:7796.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Zhu L, Wang Z, Lin Y, Chen Z, Liu H, Chen Y, et al. Sphingosine kinase 1 enhances the invasion and migration of non-small cell lung cancer cells via the AKT pathway. Oncol Rep. 2015;33(3):1257–63.PubMedGoogle Scholar
  22. 22.
    Ader I, Gstalder C, Bouquerel P, Golzio M, Andrieu G, Zalvidea S, et al. Neutralizing S1P inhibits intratumoral hypoxia, induces vascular remodelling and sensitizes to chemotherapy in prostate cancer. Oncotarget. 2015;6(15):13803–21.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Cho SY, Cho S, Park E, Kim B, Sohn EJ, Oh B, et al. Coumestrol suppresses hypoxia inducible factor 1α by inhibiting ROS mediated sphingosine kinase 1 in hypoxic PC-3 prostate cancer cells. Bioorg Med Chem Lett. 2014;24(11):2560–4.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Jianting Long
    • 1
  • Ying Xie
    • 2
  • Junmei Yin
    • 2
  • Wei Lu
    • 2
  • Shi Fang
    • 2
  1. 1.Department of Medicinal OncologyThe First Affiliated Hospital, Sun Yat-Sen UniversityGuangzhouChina
  2. 2.Department of Clinic Nutritionthe First Affiliated Hospital of Sun Yat-Sen UniversityGuangzhouChina

Personalised recommendations