Tumor Biology

, Volume 37, Issue 5, pp 6437–6446 | Cite as

Anticancer function of α-solanine in lung adenocarcinoma cells by inducing microRNA-138 expression

  • Furui Zhang
  • Rui Yang
  • Guojun Zhang
  • Ruirui Cheng
  • Yong Bai
  • Huasi Zhao
  • Xinhua Lu
  • Hui Li
  • Shanshan Chen
  • Juan Li
  • Shujun Wu
  • Ping Li
  • Xiaonan Chen
  • Qianqian Sun
  • Guoqiang Zhao
Original Article

Abstract

Currently, lung cancer is still a main cause of malignancy-associated death worldwide. Even though various methods for prevention and treatment of lung cancer have been improved in recent decades, the 5-year survival rate has remained very low. Insights into the anticancer function of small-molecule anticancer compounds have opened our visual field about cancer therapy. α-Solanine has been well studied for its antitumor properties, but its effect in lung cancer and associated molecular mechanisms have not yet been evaluated. To explore the anticancer function of α-solanine, we performed an MTT assay, Transwell arrays, colony-forming survival assay, quantitative reverse transcription PCR (qRT-PCR), Western blotting, and dual luciferase reporter assays in A549 and H1299 cells. We found that α-solanine not only inhibited cell migration and invasion ability but also enhanced the chemosensitivity and radiosensitivity of A549 and H1299 cells. Moreover, we discovered that α-solanine could affect the expression of miR-138 and focal adhesion kinase (FAK), both of which were also found to affect the chemosensitivity and radiosensitivity of A549 and H1299 cells. In conclusion, α-solanine could affect miR-138 and FAK expression to restrict cell migration and invasion and enhance the chemosensitivity and radiosensitivity of A549 and H1299 cells. The α-solanine/miR-138/FAK cascade can probably be a potential therapy target against lung adenocarcinoma.

Keywords

Lung adenocarcinoma cells α-Solanine MiR-138 Migration Invasion Chemosensitivity Radiosensitivity 

Notes

Acknowledgments

The authors are grateful to all staff at the study center who contributed to this study. This study was supported by a grant from the Education Agency of Henan (No. 13A310671).

Compliance with ethical standard

Conflicts of interest

None

References

  1. 1.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65:5–29.CrossRefPubMedGoogle Scholar
  2. 2.
    Genestreti G, Di Battista M, Cavallo G, Bartolotti M, Brandes AA. Maintenance therapy in non-small cell lung cancer. Expert Rev Anticancer Ther. 2015;15:839–46.CrossRefPubMedGoogle Scholar
  3. 3.
    Crvenkova S, Pesevska M. Important prognostic factors for the long-term survival in non-small cell lung cancer patients treated with combination of chemotherapy and conformal radiotherapy. J BUON. 2015;20:775–81.PubMedGoogle Scholar
  4. 4.
    Jabbour SK, Kim S, Haider SA, Xu X, Wu A, Surakanti S, et al. Reduction in tumor volume by cone beam computed tomography predicts overall survival in non-small cell lung cancer treated with chemoradiation therapy. Int J Radiat Oncol Biol Phys. 2015;92:627–33.CrossRefPubMedGoogle Scholar
  5. 5.
    Hata A, Katakami N, Tanaka K, Takeshita J, Matsumoto T, Monden K, et al. Bevacizumab plus weekly paclitaxel with or without carboplatin for previously-treated non-squamous non-small cell lung cancer. Anticancer Res. 2014;34:275–81.PubMedGoogle Scholar
  6. 6.
    Köhler J, Schuler M. Afatinib, erlotinib and gefitinib in the first-line therapy of EGFR mutation-positive lung adenocarcinoma: a review. Onkologie. 2013;36:510–8.CrossRefPubMedGoogle Scholar
  7. 7.
    Sgambato A, Casaluce F, Maione P, Rossi A, Ciardiello F, Gridelli C. Cetuximab in advanced non-small cell lung cancer (NSCLC): the showdown? J Thorac Dis. 2014;6:578–80.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Gong T, Wang CF, Yuan JR, Li Y, Gu JF, Zhao BJ, et al. Inhibition of tumor growth and immunomodulatory effects of flavonoids and scutebarbatines of Scutellaria barbata D. Don in Lewis-Bearing C57BL/6 Mice. Evid Based Complement Alternat Med. 2015;2015:630760.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Wang L, Feng J, Chen X, Guo W, Du Y, Wang Y, et al. Myricetin enhance chemosensitivity of 5-fluorouracil on esophageal carcinoma in vitro and in vivo. Cancer Cell Int. 2014;14:71.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Zang W, Wang T, Wang Y, Li M, Xuan X, Ma Y, et al. Myricetin exerts anti-proliferative, anti-invasive, and pro-apoptotic effects on esophageal carcinoma EC9706 and KYSE30 cells via RSK2. Tumour Biol. 2014;35:12583–92.CrossRefPubMedGoogle Scholar
  11. 11.
    Sun F, Zheng XY, Ye J, Wu TT, Wang J, Chen W. Potential anticancer activity of myricetin in human T24 bladder cancer cells both in vitro and in vivo. Nutr Cancer. 2012;64:599–606.CrossRefPubMedGoogle Scholar
  12. 12.
    Weng CJ, Yen GC. Flavonoids, a ubiquitous dietary phenolic subclass, exert extensive in vitro anti-invasive and in vivo anti-metastatic activities. Cancer Metastasis Rev. 2012;31:323–51.CrossRefPubMedGoogle Scholar
  13. 13.
    Punjabi S, Cook LJ, Kersey P, Marks R, Cerio R. Solasodine glycoalkaloids: a novel topical therapy for basal cell carcinoma. A double-blind, randomized, placebo-controlled, parallel group, multicenter study. Int J Dermatol. 2008;47:78–82.CrossRefPubMedGoogle Scholar
  14. 14.
    Friedman M, Lee KR, Kim HJ, Lee IS, Kozukue N. Anticarcinogenic effects of glycoalkaloids from potatoes against human cervical, liver, lymphoma, and stomach cancer cells. J Agric Food Chem. 2005;53:6162–9.CrossRefPubMedGoogle Scholar
  15. 15.
    Lee KR, Kozukue N, Han JS, Park JH, Chang EY, Baek EJ, et al. Glycoalkaloids and metabolites inhibit the growth of human colon (HT29) and liver (HepG2) cancer cells. J Agric Food Chem. 2004;52:2832–9.CrossRefPubMedGoogle Scholar
  16. 16.
    Lv C, Kong H, Dong G, Liu L, Tong K, Sun H, et al. Antitumor efficacy of α-solanine against pancreatic cancer in vitro and in vivo. PLoS One. 2014;9:e87868.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Lu MK, Shih YW, Chang Chien TT, Fang LH, Huang HC, Chen PS. α-Solanine inhibits human melanoma cell migration and invasion by reducing matrix metalloproteinase-2/9 activities. Biol Pharm Bull. 2010;33:1685–91.CrossRefPubMedGoogle Scholar
  18. 18.
    Mohsenikia M, Alizadeh AM, Khodayari S, Khodayari H, Kouhpayeh SA, Karimi A, et al. The protective and therapeutic effects of alpha-solanine on mice breast cancer. Eur J Pharmacol. 2013;718:1–9.CrossRefPubMedGoogle Scholar
  19. 19.
    Li J, Li P, Chen T, Gao G, Chen X, Du Y, et al. Expression of microRNA-96 and its potential functions by targeting FOXO3 in non-small cell lung cancer. Tumour Biol. 2015;36:685–92.CrossRefPubMedGoogle Scholar
  20. 20.
    Wang Y, Zang W, Du Y, Ma Y, Li M, Li P, et al. Mir-655 up-regulation suppresses cell invasion by targeting pituitary tumor-transforming gene-1 in esophageal squamous cell carcinoma. J Transl Med. 2013;11:301.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Amankwatia EB, Chakravarty P, Carey FA, Weidlich S, Steele RJ, Munro AJ, et al. MicroRNA-224 is associated with colorectal cancer progression and response to 5-fluorouracil-based chemotherapy by KRAS-dependent and -independent mechanisms. Br J Cancer. 2015;112:1480–90.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Asuthkar S, Velpula KK, Chetty C, Gorantla B, Rao JS. Epigenetic regulation of miRNA-211 by MMP-9 governs glioma cell apoptosis, chemosensitivity and radiosensitivity. Oncotarget. 2012;3:1439–54.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Yang H, Tang Y, Guo W, Du Y, Wang Y, Li P, et al. Up-regulation of microRNA-138 induce radiosensitization in lung cancer cells. Tumour Biol. 2014;35:6557–65.CrossRefPubMedGoogle Scholar
  24. 24.
    Hasanain M, Bhattacharjee A, Pandey P, Ashraf R, Singh N, Sharma S, et al. α-Solanine induces ROS-mediated autophagy through activation of endoplasmic reticulum stress and inhibition of Akt/mTOR pathway. Cell Death Dis. 2015;6:e1860.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Health Quality Ontario. Epidermal growth factor receptor mutation (EGFR) testing for prediction of response to EGFR-targeting tyrosine kinase inhibitor (TKI) drugs in patients with advanced non-small-cell lung cancer: an evidence-based analysis. Ont Health Technol Assess Ser. 2010;10:1–48.Google Scholar
  26. 26.
    Dempke WC, Suto T, Reck M. Targeted therapies for non-small cell lung cancer. Lung Cancer. 2010;67:257–74.CrossRefPubMedGoogle Scholar
  27. 27.
    Wang JQ, Wang T, Shi F, Yang YY, Su J, Chai YL, et al. A randomized controlled trial comparing clinical outcomes and Toxicity of lobaplatin- versus cisplatin-based concurrent chemotherapy plus radiotherapy and high-dose-rate brachytherapy for FIGO stage II and III cervical cancer. Asian Pac J Cancer Prev. 2015;16:5957–61.CrossRefPubMedGoogle Scholar
  28. 28.
    Naka A, Takeda R, Shintani M, Ogane N, Kameda Y, Aoyama T, et al. Organic cation transporter 2 for predicting cisplatin-based neoadjuvant chemotherapy response in gastric cancer. Am J Cancer Res. 2015;5:2285–93.PubMedPubMedCentralGoogle Scholar
  29. 29.
    MacDonagh L, Gray SG, Finn SP, Cuffe S, O’Byrne KJ, Barr MP. The emerging role of microRNAs in resistance to lung cancer treatments. Cancer Treat Rev. 2015;41:160–9.CrossRefPubMedGoogle Scholar
  30. 30.
    Zhou L, Qiu T, Xu J, Wang T, Wang J, Zhou X, et al. miR-135a/b modulate cisplatin resistance of human lung cancer cell line by targeting MCL1. Pathol Oncol Res. 2013;19:677–83.CrossRefPubMedGoogle Scholar
  31. 31.
    Qiu T, Zhou L, Wang T, Xu J, Wang J, Chen W, et al. miR-503 regulates the resistance of non-small cell lung cancer cells to cisplatin by targeting Bcl-2. Int J Mol Med. 2013;32:593–8.PubMedGoogle Scholar
  32. 32.
    Duxbury MS, Ito H, Benoit E, Zinner MJ, Ashley SW, Whang EE. RNA interference targeting focal adhesion kinase enhances pancreatic adenocarcinoma gemcitabine chemosensitivity. Biochem Biophys Res Commun. 2003;311:786–92.CrossRefPubMedGoogle Scholar
  33. 33.
    Smith CS, Golubovskaya VM, Peck E, Xu LH, Monia BP, Yang X, et al. Effect of focal adhesion kinase (FAK) downregulation with FAK antisense oligonucleotides and 5-fluorouracil on the viability of melanoma cell lines. Melanoma Res. 2005;15:357–62.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Furui Zhang
    • 1
  • Rui Yang
    • 1
  • Guojun Zhang
    • 1
  • Ruirui Cheng
    • 1
  • Yong Bai
    • 1
  • Huasi Zhao
    • 1
  • Xinhua Lu
    • 1
  • Hui Li
    • 1
  • Shanshan Chen
    • 1
  • Juan Li
    • 1
  • Shujun Wu
    • 1
  • Ping Li
    • 1
  • Xiaonan Chen
    • 2
  • Qianqian Sun
    • 2
  • Guoqiang Zhao
    • 2
  1. 1.Department of Respiratory MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
  2. 2.Department of Microbiology and Immunology, School of Basic Medical SciencesZhengzhou UniversityZhengzhouChina

Personalised recommendations