Tumor Biology

, Volume 37, Issue 6, pp 7967–7980 | Cite as

Immunomodulatory potencies of isolated compounds from Crataegus azarolus through their antioxidant activities

  • Nadia Mustapha
  • Imèn Mokdad-Bzéouich
  • Aicha Sassi
  • Besma Abed
  • Kamel Ghedira
  • Thierry Hennebelle
  • Leila Chekir-Ghedira
Original Article

Abstract

The search of natural immunomodulatory agents has become an area of great interest in order to reduce damage to the human body. In this study, the immunomodulatory potential of Crataegus azarolus and its isolated hyperoside on mouse lymphocytes and macrophages in vitro was assessed. The effect of C. azarolus natural compounds on splenocytes proliferation, natural killer (NK) and cytotoxic T lymphocytes (CTL) activities, and on macrophage-mediated cytotoxicity were assessed by MTT test. Phagocytic activity and inhibition of nitric oxide (NO) release by macrophages were also evaluated. The antioxidant capacity of these products was evaluated by determining their cellular antioxidant activity (CAA) in splenocytes and macrophages. Depending on the concentrations, both ethyl acetate (EA) extract and hyperoside (Hyp) from C. azarolus affect macrophage functions by modulating their lysosomal enzyme activity and nitric oxide release. Whereas, the above-mentioned products significantly promote LPS and lectin-stimulated splenocyte proliferation, implying a potential activation of lymphocytes B and T enhancing humoral and cellular immune responses. Moreover, EA extract and Hyp could enhance the activity of NK and T lymphocytes cells, as well as the macrophages-mediated cytotoxicity against B16F10 cells. The anti-inflammatory activity was concomitant with the cellular antioxidant effect of the tested compounds against macrophages and splenocytes. Collectively, C. azarolus and its isolated hyperoside exhibited an immunomodulatory effect through their antioxidant activity. These findings suggest that C. azarolus should be explored as a novel potential immunomodulatory agent for the treatment of inflammatory diseases.

Keywords

Crataegus azarolus Ethyl acetate extract Hyperoside Immunomodulation Cellular antioxidant activity 

Notes

Acknowledgments

We acknowledge the “Ministère Tunisien de l’enseignement supérieur et de la recherche scientifique” (UR12ES12) for the financial support of this study.

Conflicts of interest

None

References

  1. 1.
    Rao CV, Verma AR, Gupta PK, Vijayakumar M. Anti-inflammatory and anti-nociceptive activities of Fumaria indica whole plant extract in experimental animals. Acta Pharm. 2007;57:491–8.CrossRefPubMedGoogle Scholar
  2. 2.
    Brieger K, Schiavone S, Miller Jr FJ, Krause KH. Reactive oxygen species: from health to disease. Swiss Med Wkly. 2012. doi: 10.4414/smw.2012.13659.PubMedGoogle Scholar
  3. 3.
    Sagnia B, Fedeli D, Casetti R, Montesano C, Falcioni G, Colizzi V. Antioxidant and anti-inflammatory activities of extracts from Cassia alata, Eleusine indica, Eremomastax speciosa, Carica papaya and Polyscias fulva medicinal plants collected in Cameroon. PLoS One. 2014;9(8):e103999. doi: 10.1371/journal.pone.0103999.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Kumar D, Arya V, Ali Bhat Z, Ahmad Khan N, Prasad DN. The genus Crataegus: chemical and pharmacological perspectives. Rev Bras Farmacogn. 2012;22:1187–200.CrossRefGoogle Scholar
  5. 5.
    Pottier-Alapetite G. Flore de la Tunisie: Angiospermes, Dicotylédones, Apétales, Dialypétales. Tunisia: Ministère de L’Enseignement Supérieur et de la Recherche Scientifique et Ministère de l’Agriculture; 1979.Google Scholar
  6. 6.
    Boukef MK. Les plantes dans la médecine traditionnelle tunisienne, médecine traditionnelle et pharmacopée. Paris: Agence de Coopération Culturelle et Technique; 1986.Google Scholar
  7. 7.
    Henchiri C, Zidi S. Contribution of the study of the antidiabetic effect of local medicinal plant: Crataegus azarolus. Curr Opin Biotechnol. 2011. doi: 10.1016/j.copbio.2011.05.451.Google Scholar
  8. 8.
    Belkhir M, Rebai O, Dhaouadi K, Congiu F, Tuberoso CI, Amri M, et al. Comparative analysis of Tunisian wild Crataeguss azarolus (yellow azarole) and Crataegus monogyna (redazarole) leaf, fruit, and traditionally derived syrup: phenolic profiles and antioxidant and antimicrobial activities of the aqueous-acetone extracts. J Agric Food Chem. 2013;61:9594–601.CrossRefPubMedGoogle Scholar
  9. 9.
    Nadia M, Imen M, Mounira K, Fadwa C, Zied G, Kamel G, et al. Antibacterial activity and modulation of antibiotic resistance by crataegus azarolus extracts. J Nat Prod. 2014;7:131–40.Google Scholar
  10. 10.
    Bouaziz A, Khennouf S, Abdalla S, Djidel S, Abu Zarga M, Bentahar A, et al. Phytochemical analysis, antioxidant activity and hypotensive effect of Algerian azarole (Crataegus azarolus L.) leaves extracts. Res J Pharm Biol Chem Sci. 2014;5:286.Google Scholar
  11. 11.
    Bor Z, Arslan R, Bektaş N, Pirildar S, Dönmez AA. Antinociceptive, antiinflammatory, and antioxidant activities of the ethanol extract of Crataegus orientalis leaves. Turk J Med Sci. 2012;42:315–24.Google Scholar
  12. 12.
    Kim SJ, Um JY, Lee JY. Anti-inflammatory activity of hyperoside through the suppression of nuclear factor-kappaB activation in mouse peritoneal macrophages. Am J Chinese Med. 2011;39:171–81.CrossRefGoogle Scholar
  13. 13.
    Tadić VM, Dobrić S, Marković GM, Dordević SM, Arsić IA, Menković NR, et al. Anti-inflammatory, gastroprotective, free-radical-scavenging, and antimicrobial activities of hawthorn berries ethanol extract. J Agric Food Chem. 2008;56:7700–9.CrossRefPubMedGoogle Scholar
  14. 14.
    Mustapha N, Bzeouich IM, Ghedira K, Hennebelle T, Chekir-Ghedira L. Compounds isolated from the aerial part of Crataegus azarolus inhibit growth of B16F10 melanoma cells and exert a potent inhibition of the melanin synthesis. Biomed Pharmacother. 2015;69:139–44.CrossRefPubMedGoogle Scholar
  15. 15.
    Krifa M, Bouhlel I, Ghedira-Chekir L, Ghedira K. Immunomodulatory and cellular anti-oxidant activities of an aqueous extract of Limoniastrum guyonianum gall. J Ethnopharmacol. 2013;146:243–9.CrossRefPubMedGoogle Scholar
  16. 16.
    Sarangi D, Ghosh SK, Bhutia SK, Mallick SK, Maiti TK. Anti-tumor and immunomodulating effects of Pleurotus ostreatus mycelia-derived proteoglycans. Int Immunopharmacol. 2006;6:1287–97.CrossRefPubMedGoogle Scholar
  17. 17.
    Sun LX, Lin ZB, Duan XS, Lu J, Ge ZH, Li XJ, et al. Ganoderma lucidum polysaccharides antagonize the suppression on lymphocytes induced by culture supernatants of B16F10 melanoma cells. J Pharm Pharmacol. 2011;63:725–35.CrossRefPubMedGoogle Scholar
  18. 18.
    Manosroi A, Saraphanchotiwitthaya A, Manosroi J. In vitro immunomodulatory effect of Pouteria cambodiana (Pierre ex Dubard) Baehni extract. J Ethnopharmacol. 2005;101:90–4.CrossRefPubMedGoogle Scholar
  19. 19.
    Marcocci L, Maguire JJ, Droy-Lefaix MT, Packer L. The nitric oxide scavenging property of Ginkgo biloba extract EGb 761. Biochem Biophys Res Commun. 1994;201:748–55.CrossRefPubMedGoogle Scholar
  20. 20.
    Ferrari M, Fornasiero MC, Isetta AM. MTT colorimetric assay for testing macrophage cytotoxic activity in vitro. J Immunol Methods. 1990;131:165–72.CrossRefPubMedGoogle Scholar
  21. 21.
    Wolfe KL, Liu RH. Cellular antioxidant activity (CAA) assay for assessing antioxidants, foods, and dietary supplements. J Agri Food Chem. 2007;55:8896–907.CrossRefGoogle Scholar
  22. 22.
    Bright JJ. Curcumin and autoimmune disease. Adv Exp Med Biol. 2007;595:425–51.CrossRefPubMedGoogle Scholar
  23. 23.
    Harizi H, Chaabane F, Ghedira K, Chekir-Ghedira L. Inhibition of proinflammatory macrophage responses and lymphocyte proliferation in vitro by ethyl acetate leaf extract from Daphne gnidium. Cell Immunol. 2011;267:94–101.CrossRefPubMedGoogle Scholar
  24. 24.
    Feng WS, Zhang QB, Zheng XK, Chen H, Zhang YL, Zhang CL. A new acylated flavonol glycoside from the aerial parts of Cardamine tangutorum. J Asian Nat Prod Res. 2012;14:805–10.CrossRefPubMedGoogle Scholar
  25. 25.
    Zhao M, Yang B, Wang J, Liu Y, Yu L, Jiang Y. Immunomodulatory and anticancer activities of flavonoids extracted from litchi (Litchi chinensis Sonn) pericarp. Int Immunopharmacol. 2007;7:162–6.CrossRefPubMedGoogle Scholar
  26. 26.
    Warren HS, Mark J, Smyth MJ. NK cells and apoptosis. Immunol Cell Biol. 1999;77:64–75.CrossRefPubMedGoogle Scholar
  27. 27.
    Ismail N, Abdullah H, Seidel V, Rotondo D. Human natural killer (NK) cell activation by luteolin from Brucea javanica leaves. J Cancer Res Exp Oncol 2012; ISSN 2141-2243 (in press).Google Scholar
  28. 28.
    Sriwanthana B, Treesangsri W, Boriboontrakul B, Niumsakul S, Chavalittumrong P. In vitro effects of Thai medicinal plants on human lymphocyte activity. J Sci Technol. 2007;29:17–28.Google Scholar
  29. 29.
    Li F, Yuan Q, Rashid F. Isolation, purification and immunobiological activity of a new water-soluble bee pollen polysaccharide from Crataegus pinnatifida Bge. Carbohyd Polym. 2009;78:80–8.CrossRefGoogle Scholar
  30. 30.
    Mustapha N, Bouhlel I, Chaabane F, Bzeouich IM, Ghedira K, Hennebelle T, et al. Aqueous extract of Crataegus azarolus protects against DNA damage in human lymphoblast Cell K562 and enhances antioxidant activity. Appl Biochem Biotechnol. 2014;172:2266–75.CrossRefPubMedGoogle Scholar
  31. 31.
    Lindqvist C, Bobrowska-Hägerstrand M, Mrówczyńska L, Engblom C, Hägerstrand H. Potentiation of natural killer cell activity with Myricetin. Anticancer Res. 2014;34:3975–9.PubMedGoogle Scholar
  32. 32.
    Guo TL, Chi RP, Hernandez DM, Auttachoat W, Zheng JF. Decreased 7,12-dimethylbenz[a]anthracene-induced carcinogenesis coincides with the induction of antitumor immunities in adult female B6C3F1 mice pretreated with genistein. Carcinogenesis. 2007;28:2560–6.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Sheeja K, Kuttan G. Activation of cytotoxic T lymphocytes responses and attenuation of tumor growth in vivo by Andrographis paniculata extract and andrographolide. Immunopharmacol Immunotoxicol. 2007;29:81–93.CrossRefPubMedGoogle Scholar
  34. 34.
    Shi X, Ruan D, Wang Y, Ma L, Li M. Anti-tumor activity of safflower polysaccharide (SPS) and effect on cytotoxicity of CTL cells, NK cells of T739 lung cancer in mice. China J Chinese Mat Medica. 2010;35:215–18.Google Scholar
  35. 35.
    Siveen KS, Kuttan G. Effect of Aerva lanata on cell-mediated immune responses and cytotoxic T-lymphocyte generation in normal and tumor-bearing mice. J Immunotoxicol. 2012;9:25–33.CrossRefPubMedGoogle Scholar
  36. 36.
    Trapani JA, Smyth MJ. Functional significance of the perforin/granzyme cell death pathway. Nat Rev Immunol. 2002;2:735–47.CrossRefPubMedGoogle Scholar
  37. 37.
    Herberman RB, Djieu JY, Kay HD, Ortaldo JR, Riccardi D, Bonnard GD, et al. Natural killer cells: characteristics and regulation of activity. Immunol Rev. 1979;44:43–70.CrossRefPubMedGoogle Scholar
  38. 38.
    Schepetkin IA, Quinn MT. Botanical polysaccharides: macrophage immunomodulation and therapeutic potential. Int Immunopharmacol. 2006;6:317–33.CrossRefPubMedGoogle Scholar
  39. 39.
    Jakhar R, Paul S, Chauhan AK, Kang SC. Morin hydrate augments phagocytosis mechanism and inhibits LPS induced autophagic signaling in murine macrophage. Int Immunopharmacol. 2014;22:356–65.CrossRefPubMedGoogle Scholar
  40. 40.
    Manosroi A, Saraphanchotiwitthaya A, Manosroi J. Immunomodulatory activities of Clausena excavata Burm. f. wood extracts. J Ethnopharmacol. 2003;89:155–60.CrossRefPubMedGoogle Scholar
  41. 41.
    Dong H, Zhang TP, Peng SM, Li J, Zhang HY. Extraction of sitosterol from hawthorn fruits and effect of sitosterol on immunological function and serum lipid. Nat Prod Res Dev. 2009;21:60–3.Google Scholar
  42. 42.
    MacMicking J, Xie QW, Nathan C. Nitric oxide and macrophage function. Annu Rev Immunol. 1997;15:323–50.CrossRefPubMedGoogle Scholar
  43. 43.
    Wang T, Zhang P, Zhao C, Zhang Y, Liu H, Hu L, et al. Prevention effect in selenite induced cataract in vivo and antioxidative effects in vitro of Crataegus pinnatifida leaves. Biol Trace Elem Res. 2011;142:106–16.CrossRefPubMedGoogle Scholar
  44. 44.
    Ji Y, Akerboom TP, Sies H, Thomas JA. S-nitrosylation and S-glutathiolation of protein sulfhydryls by S-nitrosoglutathione. Arch Biochem Biophys. 1999;362:67–78.CrossRefPubMedGoogle Scholar
  45. 45.
    Sies H, Mehlhorn R. Mutagenicity of nitroxide-free radicals. Arch Biochem Biophys. 1986;251:393–6.CrossRefPubMedGoogle Scholar
  46. 46.
    Arteel GE, Kadiiska MB, Rusyn I, Bradford BU, Mason RP, Raleigh JA, et al. Oxidative stress occurs in perfused rat liver at low oxygen tension by mechanisms involving peroxynitrite. Mol Pharmacol. 1999;55:708–15.PubMedGoogle Scholar
  47. 47.
    Moncada S, Palmer RM, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991;43:109–42.PubMedGoogle Scholar
  48. 48.
    Ohshima H, Bartsch H. Chronic infections and inflammatory processes as cancer risk factors: possible role of nitric oxide in carcinogenesis. Mutat Res. 1994;305:253–64.CrossRefPubMedGoogle Scholar
  49. 49.
    Tamir S, Tannenbaum SR. The role of nitric oxide (NO) in the carcinogenic process. Biochim Biophys Acta. 1996;1288:31–6.Google Scholar
  50. 50.
    Hamilton TA, Adams DO. Molecular mechanisms of signal transduction in macrophages. Immunol Today. 1987;8:151–8.CrossRefPubMedGoogle Scholar
  51. 51.
    Bucana C, Hoyer LC, Hobbs B, Breesman S, McDaniel M, Hanna MC. Morphological evidence for the translation of lysosomal organelles from cytotoxic macrophages into the cytoplasm of tumour target cells. Cancer Res. 1976;36:4444–58.PubMedGoogle Scholar
  52. 52.
    Cleveland RP, Meltzer MS, Zbar B. Tumor cytotoxicity in vitro by macrophages from mice infected with Mycobacterium bovis strain BCG. J Natl Cancer Inst. 1974;52:1887–94.PubMedGoogle Scholar
  53. 53.
    Orsolic N, Basic I. Water-soluble derivative of propolis and its polyphenolic compounds enhance tumoricidal activity of macrophages. J Ethnopharmacol. 2005;102:37–45.CrossRefPubMedGoogle Scholar
  54. 54.
    Ching LM, Joseph WR, Baguley BC. Stimulation of macrophage tumouricidal activity by 5,6-dimethyl-xanthenone-4-acetic acid, a potent analogue of the antitumour agent flavone-8-acetic acid. Biochem Pharmacol. 1992;44:192–5.CrossRefPubMedGoogle Scholar
  55. 55.
    Piao MJ, Kang KA, Zhang R, Ko DO, Wang ZH, You HJ, et al. Hyperoside prevents oxidative damage induced by hydrogen peroxide in lung fibroblast cells via an antioxidant effect. Biochim Biophys Acta. 2008;1780:1448–57.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Nadia Mustapha
    • 1
    • 2
  • Imèn Mokdad-Bzéouich
    • 1
    • 2
  • Aicha Sassi
    • 1
    • 2
  • Besma Abed
    • 1
    • 2
  • Kamel Ghedira
    • 2
  • Thierry Hennebelle
    • 3
  • Leila Chekir-Ghedira
    • 1
    • 2
  1. 1.Laboratoire de biologie cellulaire et moléculaire, Faculté de médecine dentaireUniversité de MonastirMonastirTunisia
  2. 2.Unité de Substances naturelles bioactives et biotechnologie UR12ES12, Faculté de pharmacie de MonastirUniversité de MonastirMonastirTunisia
  3. 3.Laboratoire de PharmacognosieE.A. 1043, Université de Lille 2, Faculté de Pharmacie B.P. 83Lille cedexFrance

Personalised recommendations