Tumor Biology

, Volume 37, Issue 2, pp 1427–1436 | Cite as

The role of lysosome in cell death regulation

Review

Abstract

Lysosome is a highly membrane-bound organelle which possesses a sequence of biological functions including protein degradation, cell signal transduction, plasma membrane repairment, homoeostasis, and autophagy. The lysosome contains more than 50 soluble acid hydrolases, and the acidification of lysosome is the most important biological characteristic. The integrity of lysosome is of vital importance. During the past few years, it was reported that the destabilization of lysosomal membrane can result in the release of lysosomal contents into cytosol and trigger cell death in a caspase-dependent or caspase-independent pathway. Lysosome functions at the late stage of autophagy and degrades cellular components delivered by autophagosome, which is a complicated process. The present article will summarize the current knowledge on the role of lysosome in cell death regulation and the underlying mechanisms.

Keywords

Lysosome Apoptosis Autophagy Mitochondria Cancer therapy 

Notes

Acknowledgments

This work was supported by NSFC grant (31370837 and 81573082).

Compliance with ethical standards

Conflicts of interest

None

References

  1. 1.
    Pryor PR, Luzio JP. Delivery of endocytosed membrane proteins to the lysosome. Biochim Biophys Acta. 2009;1793:615–24.PubMedGoogle Scholar
  2. 2.
    Mindell JA. Lysosomal acidification mechanisms. Annu Rev Physiol. 2012;74:69–86.PubMedGoogle Scholar
  3. 3.
    Appelqvist H, Sandin L, Bjornstrom K, Saftig P, Garner B, Ollinger K, et al. Sensitivity to lysosome-dependent cell death is directly regulated by lysosomal cholesterol content. PLoS One. 2012;7.Google Scholar
  4. 4.
    Rossi A, Deveraux Q, Turk B, Sali A. Comprehensive search for cysteine cathepsins in the human genome. Biol Chem. 2004;385:363–72.PubMedGoogle Scholar
  5. 5.
    Jung M, Lee J, Seo HY, Lim JS, Kim EK. Cathepsin inhibition-induced lysosomal dysfunction enhances pancreatic beta-cell apoptosis in high glucose. PLoS One. 2015;10:e0116972.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Foghsgaard L, Wissing D, Mauch D, Lademann U, Bastholm L, Boes M, et al. Cathepsin b acts as a dominant execution protease in tumor cell apoptosis induced by tumor necrosis factor. J Cell Biol. 2001;153:999–1009.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Houseweart MK, Vilaythong A, Yin XM, Turk B, Noebels JL, Myers RM. Apoptosis caused by cathepsins does not require bid signaling in an in vivo model of progressive myoclonus epilepsy (epm1). Cell Death Differ. 2003;10:1329–35.PubMedGoogle Scholar
  8. 8.
    Turk B, Stoka V. Protease signalling in cell death: caspases versus cysteine cathepsins. FEBS Lett. 2007;581:2761–7.PubMedGoogle Scholar
  9. 9.
    Hayman AR. Tartrate-resistant acid phosphatase (trap) and the osteoclast/immune cell dichotomy. Autoimmunity. 2008;41:218–23.PubMedGoogle Scholar
  10. 10.
    Roberts HC, Knott L, Avery NC, Cox TM, Evans MJ, Hayman AR. Altered collagen in tartrate-resistant acid phosphatase (trap)-deficient mice: a role for trap in bone collagen metabolism. Calcified Tissue Int. 2007;80:400–10.Google Scholar
  11. 11.
    Sun PL, Sleat DE, Lecocq M, Hayman AR, Jadot M, Lobel P. Acid phosphatase 5 is responsible for removing the mannose 6-phosphate recognition marker from lysosomal proteins. Proc Natl Acad Sci U S A. 2008;105:16590–5.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Yu Z, Persson HL, Eaton JW, Brunk UT. Intralysosomal iron: a major determinant of oxidant-induced cell death. Free Radic Biol Med. 2003;34:1243–52.PubMedGoogle Scholar
  13. 13.
    Kurz T, Gustafsson B, Brunk UT. Intralysosomal iron chelation protects against oxidative stress-induced cellular damage. Febs Journal. 2006;273:3106–17.PubMedGoogle Scholar
  14. 14.
    Terman A, Kurz T, Navratil M, Arriaga EA, Brunk UT. Mitochondrial turnover and aging of long-lived postmitotic cells: the mitochondrial-lysosomal axis theory of aging. Antioxid Redox Sign. 2010;12:503–35.Google Scholar
  15. 15.
    Ashkenazi A. Targeting the extrinsic apoptosis pathway in cancer. Cytokine Growth F R. 2008;19:325–31.Google Scholar
  16. 16.
    Fulda S, Galluzzi L, Kroemer G. Targeting mitochondria for cancer therapy. Nat Rev Drug Discov. 2010;9:447–64.PubMedGoogle Scholar
  17. 17.
    Kurz T, Terman A, Brunk UT. Autophagy, ageing and apoptosis: the role of oxidative stress and lysosomal iron. Arch Biochem Biophys. 2007;462:220–30.PubMedGoogle Scholar
  18. 18.
    Antunes F, Cadenas E, Brunk UT. Apoptosis induced by exposure to a low steady-state concentration of h2o2 is a consequence of lysosomal rupture. Biochem J. 2001;356:549–55.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Yin L, Stearns R, Gonzalez-Flecha B. Lysosomal and mitochondrial pathways in h2o2-induced apoptosis of alveolar type II cells. J Cell Biochem. 2005;94:433–45.PubMedGoogle Scholar
  20. 20.
    Waster PK, Ollinger KM. Redox-dependent translocation of p53 to mitochondria or nucleus in human melanocytes after uva- and uvb-induced apoptosis. J Invest Dermatol. 2009;129:1769–81.PubMedGoogle Scholar
  21. 21.
    Persson HL, Kurz T, Eaton JW, Brunk UT. Radiation-induced cell death: importance of lysosomal destabilization. Biochem J. 2005;389:877–84.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Persson HL. Radiation-induced lysosomal iron reactivity: implications for radioprotective therapy. IUBMB life. 2006;58:395–401.PubMedGoogle Scholar
  23. 23.
    Kagedal K, Johansson AC, Johansson U, Heimlich G, Roberg K, Wang NS, et al. Lysosomal membrane permeabilization during apoptosis—involvement of bax? Int J Exp Pathol. 2005;86:309–21.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Feldstein AE, Werneburg NW, Li ZZ, Bronk SF, Gores GJ. Bax inhibition protects against free fatty acid-induced lysosomal permeabilization. Am J Physiol-Gastr L. 2006;290:G1339–46.Google Scholar
  25. 25.
    Werneburg NW, Guicciardi ME, Bronk SF, Kaufmann SH, Gores GJ. Tumor necrosis factor-related apoptosis-inducing ligand activates a lysosomal pathway of apoptosis that is regulated by bcl-2 proteins. J Biol Chem. 2007;282:28960–70.PubMedGoogle Scholar
  26. 26.
    Werneburg N, Guicciardi ME, Yin XM, Gores GJ. Tnf-alpha-mediated lysosomal permeabilization is fan and caspase 8/bid dependent. Am J Physiol-Gastr L. 2004;287:G436–43.Google Scholar
  27. 27.
    Boya P, Andreau K, Poncet D, Zamzami N, Perfettini JL, Metivier D, et al. Lysosomal membrane permeabilization induces cell death in a mitochondrion-dependent fashion. J Exp Med. 2003;197:1323–34.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Laforge M, Petit F, Estaquier J, Senik A. Commitment to apoptosis in CD4(+) T lymphocytes productively infected with human immunodeficiency virus type 1 is initiated by lysosomal membrane permeabilization, itself induced by the isolated expression of the viral protein Nef. J Virol. 2007;81:11426–40.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Di Piazza M, Mader C, Geletneky K, Calle MHY, Weber E, Schlehofer J, et al. Cytosolic activation of cathepsins mediates parvovirus H-1-induced killing of cisplatin and trail-resistant glioma cells. J Virol. 2007;81:4186–98.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Sandvig K, Olsnes S. Diphtheria toxin entry into cells is facilitated by low pH. J Cell Biol. 1980;87(3 Pt 1):828–32.PubMedGoogle Scholar
  31. 31.
    Blaustein RO, Koehler TM, Collier RJ, Finkelstein A. Anthrax toxin channel-forming activity of protective antigen in planar phospholipid bilayers. Proc Natl Acad Sci U S A. 1989;86(7):2209–13.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Li N, Zheng YY, Chen W, Wang CM, Liu XG, He WG, et al. Adaptor protein LAPF recruits phosphorylated p53 to lysosomes and triggers lysosomal destabilization in apoptosis. Cancer Res. 2007;67:11176–85.PubMedGoogle Scholar
  33. 33.
    Chen W, Li N, Chen TY, Han YM, Li CF, Wang YZ, et al. The lysosome-associated apoptosis-inducing protein containing the pleckstrin homology (PH) and FYVE domains (LAPF), representative of a novel family of PH and FYVE domain-containing proteins, induces caspase-independent apoptosis via the lysosomal-mitochondrial pathway. J Biol Chem. 2005;280:40985–95.PubMedGoogle Scholar
  34. 34.
    Kreuzaler PA, Staniszewska AD, Li W, Omidvar N, Kedjouar B, Turkson J, et al. Stat3 controls lysosomal-mediated cell death in vivo. Nat Cell Biol. 2011;13:303–9.PubMedGoogle Scholar
  35. 35.
    Guicciardi ME, Deussing J, Miyoshi H, Bronk SF, Svingen PA, Peters C, et al. Cathepsin B contributes to TNF-alpha-mediated hepatocyte apoptosis by promoting mitochondrial release of cytochrome c. J Clin Invest. 2000;106:1127–37.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Gyrd-Hansen M, Farkas T, Fehrenbacher N, Bastholm L, Hoyer-Hansen M, Elling F, et al. Apoptosome-independent activation of the lysosomal cell death pathway by caspase-9. Mol Cell Biol. 2006;26:7880–91.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Werneburg NW, Guicciardi ME, Bronk SF, Gores GJ. Tumor necrosis factor-alpha-associated lysosomal permeabilization is cathepsin B dependent. Am J Physiol-Gastr L. 2002;283:G947–56.Google Scholar
  38. 38.
    Liu N, Raja SM, Zazzeroni F, Metkar SS, Shah R, Zhang ML, et al. NF-kappa B protects from the lysosomal pathway of cell death. Embo Journal. 2003;22:5313–22.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Villalpando Rodriguez GE, Torriglia A. Calpain 1 induce lysosomal permeabilization by cleavage of lysosomal associated membrane protein 2. Biochim Biophys Acta. 1833;2013:2244–53.Google Scholar
  40. 40.
    Fehrenbacher N, Gyrd-Hansen M, Poulsen B, Felbor U, Kallunki T, Boes M, et al. Sensitization to the lysosomal cell death pathway upon immortalization and transformation. Cancer Res. 2004;64:5301–10.PubMedGoogle Scholar
  41. 41.
    Madge LA, Li JH, Choi J, Pober JS. Inhibition of phosphatidylinositol 3-kinase sensitizes vascular endothelial cells to cytokine-initiated cathepsin-dependent apoptosis. J Biol Chem. 2003;278:21295–306.PubMedGoogle Scholar
  42. 42.
    Fehrenbacher N, Bastholm L, Kirkegaard-Sorensen T, Rafn B, Bottzauw T, Nielsen C, et al. Sensitization to the lysosomal cell death pathway by oncogene-induced down-regulation of lysosome-associated membrane proteins 1 and 2. Cancer Res. 2008;68:6623–33.PubMedGoogle Scholar
  43. 43.
    Zhao M, Brunk UT, Eaton JW. Delayed oxidant-induced cell death involves activation of phospholipase A2. FEBS Lett. 2001;509:399–404.PubMedGoogle Scholar
  44. 44.
    Fucho R, Martinez L, Baulies A, Torres S, Tarrats N, Fernandez A, et al. ASMase regulates autophagy and lysosomal membrane permeabilization and its inhibition prevents early stage non-alcoholic steatohepatitis. J Hepatol. 2014;61:1126–34.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Hornick JR, Vangveravong S, Spitzer D, Abate C, Berardi F, Goedegebuure P, et al. Lysosomal membrane permeabilization is an early event in sigma-2 receptor ligand mediated cell death in pancreatic cancer. J Exp Clin Canc Res. 2012;31.Google Scholar
  46. 46.
    Droga-Mazovec G, Bojic L, Petelin A, Ivanova S, Romih R, Repnik U, et al. Cysteine cathepsins trigger caspase-dependent cell death through cleavage of Bid and antiapoptotic Bcl-2 homologues. J Biol Chem. 2008;283:19140–50.PubMedGoogle Scholar
  47. 47.
    Denamur S, Tyteca D, Marchand-Brynaert J, Van Bambeke F, Tulkens PM, Courtoy PJ, et al. Role of oxidative stress in lysosomal membrane permeabilization and apoptosis induced by gentamicin, an aminoglycoside antibiotic. Free Radic Biol Med. 2011;51:1656–65.PubMedGoogle Scholar
  48. 48.
    Zheng L, Kagedal K, Dehvari N, Benedikz E, Cowburn R, Jan MA, et al. Oxidative stress induces macroautophagy of amyloid beta-protein and ensuing apoptosis. Free Rad Biol Med. 2009;46:422–9.PubMedGoogle Scholar
  49. 49.
    Ji ZS, Mullendorff K, Cheng IH, Miranda RD, Huang YD, Mahley RW. Reactivity of apolipoprotein E4 and amyloid beta peptide—lysosomal stability and neurodegeneration. J Biol Chem. 2006;281:2683–92.PubMedGoogle Scholar
  50. 50.
    Zhang HL, Zhong C, Shi L, Guo YM, Fan ZS. Granulysin induces cathepsin B release from lysosomes of target tumor cells to attack mitochondria through processing of bid leading to necroptosis. J Immunol. 2009;182:6993–7000.PubMedGoogle Scholar
  51. 51.
    Yoshida Y, Saito Y, Jones LS, Shigeri Y. Chemical reactivities and physical effects in comparison between tocopherols and tocotrienols: physiological significance and prospects as antioxidants. J Biosci Bioeng. 2007;104:439–45.PubMedGoogle Scholar
  52. 52.
    Das TP, Suman S, Damodaran C. Induction of reactive oxygen species generation inhibits epithelial-mesenchymal transition and promotes growth arrest in prostate cancer cells. Mol Carcinogen. 2014;53:537–47.Google Scholar
  53. 53.
    Berndt C, Kurz T, Selenius M, Fernandes AP, Edgren MR, Brunk UT. Chelation of lysosomal iron protects against ionizing radiation. The Biochemical journal. 2010;432:295–301.PubMedGoogle Scholar
  54. 54.
    Bivik C, Rosdahl I, Ollinger K. Hsp70 protects against uvb induced apoptosis by preventing release of cathepsins and cytochrome c in human melanocytes. Carcinogenesis. 2007;28:537–44.PubMedGoogle Scholar
  55. 55.
    Doulias PT, Kotoglou P, Tenopoulou M, Keramisanou D, Tzavaras T, Brunk U, et al. Involvement of heat shock protein-70 in the mechanism of hydrogen peroxide-induced DNA damage: the role of lysosomes and iron. Free Rad Biol Med. 2007;42:567–77.PubMedGoogle Scholar
  56. 56.
    Kirkegaard T, Roth AG, Petersen NH, Mahalka AK, Olsen OD, Moilanen I, et al. Hsp70 stabilizes lysosomes and reverts Niemann-Pick disease-associated lysosomal pathology. Nature. 2010;463:549–53.PubMedGoogle Scholar
  57. 57.
    Dudeja V, Mujumdar N, Phillips P, Chugh R, Borja-Cacho D, Dawra RK, et al. Heat shock protein 70 inhibits apoptosis in cancer cells through simultaneous and independent mechanisms. Gastroenterology. 2009;136:1772–82.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Daugaard M, Kirkegaard-Sorensen T, Ostenfeld MS, Aaboe M, Hoyer-Hansen M, Orntoft TF, et al. Lens epithelium-derived growth factor is an HSP70-2 regulated guardian of lysosomal stability in human cancer. Cancer Res. 2007;67:2559–67.PubMedGoogle Scholar
  59. 59.
    Deng D, Jiang N, Hao SJ, Sun H, Zhang GJ. Loss of membrane cholesterol influences lysosomal permeability to potassium ions and protons. Bba-Biomembranes. 2009;1788:470–6.PubMedGoogle Scholar
  60. 60.
    Caruso JA, Mathieu PA, Reiners JJ. Sphingomyelins suppress the targeted disruption of lysosomes/endosomes by the photosensitizer NPE6 during photodynamic therapy. Biochem J. 2005;392:325–34.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Oberle C, Huai J, Reinheckel T, Tacke M, Rassner M, Ekert PG, et al. Lysosomal membrane permeabilization and cathepsin release is a Bax/Bak-dependent, amplifying event of apoptosis in fibroblasts and monocytes. Cell Death Differ. 2010;17:1167–78.PubMedGoogle Scholar
  62. 62.
    Appelqvist H, Johansson AC, Linderoth E, Johansson U, Antonsson B, Steinfeld R, et al. Lysosome-mediated apoptosis is associated with cathepsin D-specific processing of Bid at Phe24, Trp48, and Phe183. Ann Clin Lab Sci. 2012;42:231–42.PubMedGoogle Scholar
  63. 63.
    Boya P, Kroemer G. Lysosomal membrane permeabilization in cell death. Oncogene. 2008;27:6434–51.PubMedGoogle Scholar
  64. 64.
    Xu M, Yang L, Rong JG, Ni Y, Gu WW, Luo Y, et al. Inhibition of cysteine cathepsin B and l activation in astrocytes contributes to neuroprotection against cerebral ischemia via blocking the tBid-mitochondrial apoptotic signaling pathway. Glia. 2014;62:855–80.PubMedGoogle Scholar
  65. 65.
    Conus S, Perozzo R, Reinheckel T, Peters C, Scapozza L, Yousefi S, et al. Caspase-8 is activated by cathepsin D initiating neutrophil apoptosis during the resolution of inflammation. J Exp Med. 2008;205:685–98.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Castino R, Bellio N, Nicotra G, Follo C, Trincheri NF, Isidoro C. Cathepsin D-Bax death pathway in oxidative stressed neuroblastoma cells. Free Rad Biol Med. 2007;42:1305–16.PubMedGoogle Scholar
  67. 67.
    Laurent-Matha V, Huesgen PF, Masson O, Derocq D, Prebois C, Gary-Bobo M, et al. Proteolysis of cystatin C by cathepsin D in the breast cancer microenvironment. Faseb J. 2012;26:5172–81.PubMedGoogle Scholar
  68. 68.
    Hennigar SR, Seo YA, Sharma S, Soybel DI, Kelleher SL. Znt2 is a critical mediator of lysosomal-mediated cell death during early mammary gland involution. Sci Rep-Uk. 2015;5.Google Scholar
  69. 69.
    Mijaljica D, Prescott M, Devenish RJ. Microautophagy in mammalian cells revisiting a 40-year-old conundrum. Autophagy. 2011;7:673–82.PubMedGoogle Scholar
  70. 70.
    Cuervo AM, Wong E. Chaperone-mediated autophagy: roles in disease and aging. Cell Res. 2014;24:92–104.PubMedGoogle Scholar
  71. 71.
    Dodson M, Darley-Usmar V, Zhang J. Cellular metabolic and autophagic pathways: traffic control by redox signaling. Free Radic Biol Med. 2013;63:207–21.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Jung CH, Ro SH, Cao J, Otto NM, Kim DH. MTOR regulation of autophagy. FEBS Lett. 2010;584:1287–95.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Kim J, Kundu M, Viollet B, Guan KL. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 2011;13:132–U171.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Balaburski GM, Hontz RD, Murphy ME. P53 and ARF: unexpected players in autophagy. Trends Cell Biol. 2010;20:363–9.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Schwartz-Roberts JL, Shajahan AN, Cook KL, Warri A, Abu-Asab M, Clarke R. Gx15-070 (obatoclax) induces apoptosis and inhibits cathepsin D- and L-mediated autophagosomal lysis in antiestrogen-resistant breast cancer cells. Mol Cancer Ther. 2013;12:448–59.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Settembre C, Fraldi A, Medina DL, Ballabio A. Signals from the lysosome: a control centre for cellular clearance and energy metabolism. Nat Rev Mol Cell Bio. 2013;14:283–96.Google Scholar
  77. 77.
    Yu L, McPhee CK, Zheng LX, Mardones GA, Rong YG, Peng JY, et al. Termination of autophagy and reformation of lysosomes regulated by MTOR. Nature. 2010;465:942–U911.PubMedPubMedCentralGoogle Scholar
  78. 78.
    Shen HM, Mizushima N. At the end of the autophagic road: an emerging understanding of lysosomal functions in autophagy. Trends Biochem Sci. 2014;39:61–71.PubMedGoogle Scholar
  79. 79.
    Hung YH, Chen LM, Yang JY, Yang WY. Spatiotemporally controlled induction of autophagy-mediated lysosome turnover. Nat Commun. 2013;4:2111.PubMedGoogle Scholar
  80. 80.
    Hasegawa J, Maejima I, Iwamoto R, Yoshimori T. Selective autophagy: lysophagy. Methods. 2015;75:128–32.PubMedGoogle Scholar
  81. 81.
    Maejima I, Takahashi A, Omori H, Kimura T, Takabatake Y, Saitoh T, et al. Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury. The EMBO journal. 2013;32:2336–47.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Huotari J, Helenius A. Endosome maturation. Embo Journal. 2011;30:3481–500.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Jager S, Bucci C, Tanida I, Ueno T, Kominami E, Saftig P, et al. Role for Rab7 in maturation of late autophagic vacuoles. J Cell Sci. 2004;117:4837–48.PubMedGoogle Scholar
  84. 84.
    Eskelinen EL. Roles of lamp-1 and lamp-2 in lysosome biogenesis and autophagy. Mol Aspects Med. 2006;27:495–502.PubMedGoogle Scholar
  85. 85.
    Li ZZ, Berk M, McIntyre TM, Gores GJ, Feldstein AE. The lysosomal-mitochondrial axis in free fatty acid-induced hepatic lipotoxicity. Hepatology. 2008;47:1495–503.PubMedPubMedCentralGoogle Scholar
  86. 86.
    Wattiaux R, Coninck SWD, Thirion J, Gasingirwa MC, Jadot M. Lysosornes and Fas-mediated liver cell death. Biochem J. 2007;403:89–95.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Klaric M, Tao S, Stoka V, Turk B, Turk V. Cysteine cathepsins are not critical for TNF-alpha-induced cell death in T98G and U937 cells. Bba-Proteins Proteom. 2009;1794:1372–7.Google Scholar
  88. 88.
    Huai J, Vogtle FN, Jockel L, Li Y, Kiefer T, Ricci JE, et al. TNFalpha-induced lysosomal membrane permeability is downstream of MOMP and triggered by caspase-mediated NDUFS1 cleavage and ROS formation. J Cell Sci. 2013;126:4015–25.PubMedGoogle Scholar
  89. 89.
    Appelqvist H, Waster P, Kagedal K, Ollinger K. The lysosome: from waste bag to potential therapeutic target. J Mol Cell Biol. 2013;5:214–26.PubMedGoogle Scholar
  90. 90.
    Kallunki T, Olsen OD, Jaattela M. Cancer-associated lysosomal changes: friends or foes? Oncogene. 2013;32:1995–2004.PubMedGoogle Scholar
  91. 91.
    Palermo C, Joyce JA. Cysteine cathepsin proteases as pharmacological targets in cancer. Trends Pharmacol Sci. 2008;29:22–8.PubMedGoogle Scholar
  92. 92.
    Jedeszko C, Sloane BF. Cysteine cathepsins in human cancer. Biol Chem. 2004;385:1017–27.PubMedGoogle Scholar
  93. 93.
    Chen QY, Fei J, Wu LJ, Jiang ZY, Wu YQ, Zheng Y, et al. Detection of cathepsin B, cathepsin L, cystatin c, urokinase plasminogen activator and urokinase plasminogen activator receptor in the sera of lung cancer patients. Oncology letters. 2011;2:693–9.PubMedPubMedCentralGoogle Scholar
  94. 94.
    Premzl A, Zavasnik-Bergant V, Turk V, Kos J. Intracellular and extracellular cathepsin B facilitate invasion of MCF-10A neoT cells through reconstituted extracellular matrix in vitro. Exp Cell Res. 2003;283:206–14.PubMedGoogle Scholar
  95. 95.
    Bao W, Fan Q, Luo X, Cheng WW, Wang YD, Li ZN, et al. Silencing of cathepsin B suppresses the proliferation and invasion of endometrial cancer. Oncol Rep. 2013;30:723–30.PubMedGoogle Scholar
  96. 96.
    Zhang W, Wang SM, Wang Q, Yang ZJ, Pan ZM, Li L. Overexpression of cysteine cathepsin L is a marker of invasion and metastasis in ovarian cancer. Oncol Rep. 2014;31:1334–42.PubMedGoogle Scholar
  97. 97.
    Levicar N, Dewey RA, Daley E, Bates TE, Davies D, Kos J, et al. Selective suppression of cathepsin L by antisense cDNA impairs human brain tumor cell invasion in vitro and promotes apoptosis. Cancer Gene Ther. 2003;10:141–51.PubMedGoogle Scholar
  98. 98.
    Brindle NR, Joyce JA, Rostker F, Lawlor ER, Swigart-Brown L, Evan G, et al. Deficiency for the cysteine protease cathepsin L impairs Myc-induced tumorigenesis in a mouse model of pancreatic neuroendocrine cancer. PLoS One. 2015;10.Google Scholar
  99. 99.
    Shree T, Olson OC, Elie BT, Kester JC, Garfall AL, Simpson K, et al. Macrophages and cathepsin proteases blunt chemotherapeutic response in breast cancer. Gene Dev. 2011;25:2465–79.PubMedPubMedCentralGoogle Scholar
  100. 100.
    Hook G, Jacobsen JS, Grabstein K, Kindy M, Hook V. Cathepsin B is a new drug target for traumatic brain injury therapeutics: evidence for E64d as a promising lead drug candidate. Front Neurol. 2015;6:178.PubMedPubMedCentralGoogle Scholar
  101. 101.
    Muehlenweg B, Assfalg-Machleidt I, Parrado SG, Burgle M, Creutzburg S, Schmitt M, et al. A novel type of bifunctional inhibitor directed against proteolytic activity and receptor/ligand interaction. Cystatin with a urokinase receptor binding site. J Biol Chem. 2000;275:33562–6.PubMedGoogle Scholar
  102. 102.
    Guo F, Sigua C, Bali P, George P, Fiskus W, Scuto A, et al. Mechanistic role of heat shock protein 70 in Bcr-Abl-mediated resistance to apoptosis in human acute leukemia cells. Blood. 2005;105:1246–55.PubMedGoogle Scholar
  103. 103.
    Gabai VL, Mabuchi K, Mosser DD, Sherman MY. Hsp72 and stress kinase c-jun n-terminal kinase regulate the Bid-dependent pathway in tumor necrosis factor-induced apoptosis. Mol Cell Biol. 2002;22:3415–24.PubMedPubMedCentralGoogle Scholar
  104. 104.
    Raghunand N, He X, van Sluis R, Mahoney B, Baggett B, Taylor CW, et al. Enhancement of chemotherapy by manipulation of tumour PH. Brit J Cancer. 1999;80:1005–11.PubMedPubMedCentralGoogle Scholar
  105. 105.
    De Milito A, Fais S. Proton pump inhibitors may reduce tumour resistance. Expert Opin Pharmaco. 2005;6:1049–54.Google Scholar
  106. 106.
    Kobia F, Duchi S, Deflorian G, Vaccari T. Pharmacologic inhibition of vacuolar H plus ATPase reduces physiologic and oncogenic Notch signaling. Mol Oncol. 2014;8:207–20.PubMedGoogle Scholar
  107. 107.
    Li LQ, Xie WJ, Pan D, Chen H, Zhang L. Inhibition of autophagy by bafilomycin A1 promotes chemosensitivity of gastric cancer cells. Tumour Biol. 2015.Google Scholar
  108. 108.
    Groth-Pedersen L, Jaattela M. Combating apoptosis and multidrug resistant cancers by targeting lysosomes. Cancer Lett. 2013;332:265–74.PubMedGoogle Scholar
  109. 109.
    Salerno M, Avnet S, Bonuccelli G, Hosogi S, Granchi D, Baldini N. Impairment of lysosomal activity as a therapeutic modality targeting cancer stem cells of embryonal rhabdomyosarcoma cell line RD. PLoS One. 2014;9, e110340.PubMedPubMedCentralGoogle Scholar
  110. 110.
    Agostinelli E, Condello M, Tempera G, Macone A, Bozzuto G, Ohkubo S, et al. The combined treatment with chloroquine and the enzymatic oxidation products of spermine overcomes multidrug resistance of melanoma M14 ADR2 cells: a new therapeutic approach. Int J Oncol. 2014;45:1109–22.PubMedGoogle Scholar
  111. 111.
    Fukuda T, Oda K, Wada-Hiraike O, Sone K, Inaba K, Ikeda Y, et al. The anti-malarial chloroquine suppresses proliferation and overcomes cisplatin resistance of endometrial cancer cells via autophagy inhibition. Gynecol Oncol. 2015;137:538–45.PubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  1. 1.Key Laboratory of Radiobiology (Ministry of Health), School of Public HealthJilin UniversityChangchunChina
  2. 2.Center for Radiological ResearchColumbia UniversityNew YorkUSA
  3. 3.Department Cancer CareUniversity of ManitobaWinnipegCanada

Personalised recommendations