Tumor Biology

, Volume 37, Issue 2, pp 1445–1450 | Cite as

The roles of microRNAs in Wilms’ tumors

  • Xin Yu
  • Zheng Li
  • Matthew T V Chan
  • William Ka Kei Wu


Wilms’ tumor is the most common renal tumor in children in which diffusely anaplastic or unfavorable histology foreshadows poor prognosis. MicroRNAs are small, non-coding RNAs that negatively regulate gene expression at the posttranscriptional level. Accumulating evidence shows that microRNA dysregulation takes part in the pathogenesis of many renal diseases, such as chronic kidney diseases, polycystic kidney disease, renal fibrosis, and renal cancers. In Wilms’ tumor, dysregulation of some key oncogenic or tumor-suppressing microRNAs, such as miR-17~92 cluster, miR-185, miR-204, and miR-483, has been documented. In this review, we will summarize current evidence on the role of dysregulated microRNAs in the development of Wilms’ tumor.


Wilms’ tumor Nephroblastoma MicroRNAs 


Compliance with ethical standards

Conflicts of interest



  1. 1.
    Gleason JM, Lorenzo AJ, Bowlin PR, Koyle MA. Innovations in the management of Wilms’ tumor. Ther Adv Urol. 2014;6:165–76.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Zhang J, Guo F, Wang L, Zhao W, Zhang D, Yang H, et al. Identification of apolipoprotein c-i as a potential Wilms’ tumor marker after excluding inflammatory factors. Int J Mol Sci. 2014;15:16186–95.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Gaetan G, Ouimet A, Lapierre C, Teira P, Sartelet H. Neuroblastoma presenting like a Wilms’ tumor with thrombus in inferior vena cava and pulmonary metastases: a case series. SpringerPlus. 2014;3:351.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Guruprasad B, Rohan B, Kavitha S, Madhumathi DS, Lokanath D, Appaji L. Wilms’ tumor: single centre retrospective study from South India. Indian J Surg Oncol. 2013;4:301–4.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Baskaran D. Extrarenal teratoid Wilms’ tumor in association with horseshoe kidney. Indian J Surg. 2013;75:128–32.CrossRefPubMedGoogle Scholar
  6. 6.
    Pshak TJ, Cho DS, Hayes KL, Vemulakonda VM. Correlation between ct-estimated tumor volume, pathologic tumor volume, and final pathologic specimen weight in children with Wilms’ tumor. J Pediatr Urol. 2014;10:148–54.CrossRefPubMedGoogle Scholar
  7. 7.
    Babashahi M, Mehrazma M, Nasiri SJ, Azizi Jalilian F, Rezaei-Tavirani M. Her2/neu expression in Wilms’ tumor and correlation with histopathologic findings. Iranian J Cancer Prev. 2013;6:160–4.Google Scholar
  8. 8.
    Malogolowkin M, Spreafico F, Dome JS, van Tinteren H, Pritchard-Jones K, van den Heuvel-Eibrink MM, et al. Incidence and outcomes of patients with late recurrence of Wilms’ tumor. Pediatr Blood Cancer. 2013;60:1612–5.CrossRefPubMedGoogle Scholar
  9. 9.
    Huszno J, Starzyczny-Slota D, Jaworska M, Nowara E. Adult Wilms’ tumor—diagnosis and current therapy. Central European J Urol. 2013;66:39–44.CrossRefGoogle Scholar
  10. 10.
    Parelkar SV, Mundada D, Oak SN, Sanghvi BV, Joshi PB, Kapadnis SP, et al. Nonresponsiveness to chemotherapy: a formidable surgical challenge in Wilms’ tumor with intracardiac extension. Indian J Surg Oncol. 2013;4:362–5.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Aoba T, Urushihara N, Fukumoto K, Furuta S, Fukuzawa H, Mitsunaga M, et al. Relapse of unilateral favorable histology Wilms’ tumor: significant clinicopathological factors. J Pediatr Surg. 2012;47:2210–5.CrossRefPubMedGoogle Scholar
  12. 12.
    Krishnan J, Pietras J, Nachmann M, Brown G. Adult Wilms’ tumor with a unique presentation of high-grade fever, photophobia, and headache. Rev Urol. 2012;14:31–4.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Isidor B, Bourdeaut F, Lafon D, Plessis G, Lacaze E, Kannengiesser C, et al. Wilms’ tumor in patients with 9q22.3 microdeletion syndrome suggests a role for ptch1 in nephroblastomas. Eur J Hum Genet. 2013;21:784–7.CrossRefPubMedGoogle Scholar
  14. 14.
    Yadav YK, Sharma U, Gupta K, Arora R. Squamous predominant teratoid Wilms’ tumor. J Lab Physicians. 2012;4:50–2.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Pluciennik E, Nowakowska M, Wujcicka WI, Sitkiewicz A, Kazanowska B, Zielinska E, et al. Genetic alterations of wwox in Wilms’ tumor are involved in its carcinogenesis. Oncol Rep. 2012;28:1417–22.PubMedGoogle Scholar
  16. 16.
    Amirian ES. The role of hispanic ethnicity in pediatric Wilms’ tumor survival. Pediatr Hematol Oncol. 2013;30:317–27.CrossRefPubMedGoogle Scholar
  17. 17.
    Zhang LJ, Liu W, Gao YM, Qin YJ, Wu RD. The expression of il-6 and stat3 might predict progression and unfavorable prognosis in Wilms’ tumor. Biochem Biophys Res Commun. 2013;435:408–13.CrossRefPubMedGoogle Scholar
  18. 18.
    Perrino CM, Wang JF, Chen AC, Collins BT. Adult Wilms’ tumor metastatic to the lung: endobronchial ultrasound-guided fine needle aspiration biopsy. Diagn Cytopathol. 2014;42:950–5.CrossRefPubMedGoogle Scholar
  19. 19.
    Lee SH, Bae MH, Choi SH, Lee JS, Cho YS, Joo KJ, et al. Wilms’ tumor in a horseshoe kidney. Korean J Urol. 2012;53:577–80.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Yu X, Li Z: The role of microRNAs expression in laryngeal cancer. Oncotarget. 2015;6:23297–305.Google Scholar
  21. 21.
    Li Z, Yu X, Shen J, Law PT, Chan MT, Wu WK: MicroRNA expression and its implications for diagnosis and therapy of gallbladder cancer. Oncotarget. 2015;6:13914–24.Google Scholar
  22. 22.
    Li Z, Yu X, Shen J, Chan MT, Wu WK: microRNA in intervertebral disc degeneration. Cell Prolif. 2015;48:278–83.Google Scholar
  23. 23.
    Li Z, Yu X, Shen J, Jiang Y: MicroRNA dysregulation in uveal melanoma: a new player enters the game. Oncotarget. 2015;6:4562–8. Google Scholar
  24. 24.
    Diederichs S, Haber DA. Sequence variations of microRNAs in human cancer: alterations in predicted secondary structure do not affect processing. Cancer Res. 2006;66:6097–104.CrossRefPubMedGoogle Scholar
  25. 25.
    Kim YK, Yu J, Han TS, Park SY, Namkoong B, Kim DH, et al. Functional links between clustered microRNAs: suppression of cell-cycle inhibitors by microRNA clusters in gastric cancer. Nucleic Acids Res. 2009;37:1672–81.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Martello G, Rosato A, Ferrari F, Manfrin A, Cordenonsi M, Dupont S, et al. A microRNA targeting dicer for metastasis control. Cell. 2010;141:1195–207.CrossRefPubMedGoogle Scholar
  27. 27.
    Xhemalce B, Robson SC, Kouzarides T. Human RNA methyltransferase bcdin3d regulates microRNA processing. Cell. 2012;151:278–88.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Chavali V, Tyagi SC, Mishra PK: Differential expression of dicer, miRNAs, and inflammatory markers in diabetic ins2+/- akita hearts. Cell Biochem Biophys. 2014;68:25–35.Google Scholar
  29. 29.
    Yu X, Li Z, Liu J: MiRNAs in primary cutaneous lymphomas. Cell Prolif. 2015;48:271–7.Google Scholar
  30. 30.
    Li Z, Yu X, Shen J, Wu WK, Chan MT. MicroRNA expression and its clinical implications in Ewing’s sarcoma. Cell Prolif. 2015;48:1–6.CrossRefPubMedGoogle Scholar
  31. 31.
    Yu X, Li Z, Shen J, Wu WK, Liang J, Weng X, et al. MicroRNA-10b promotes nucleus pulposus cell proliferation through rhoc-akt pathway by targeting hoxd10 in intervetebral disc degeneration. PloS One. 2013;8:e83080.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Yu X, Li Z. MicroRNAs regulate vascular smooth muscle cell functions in atherosclerosis (review). Int J Mol Med. 2014;34:923–33.PubMedGoogle Scholar
  33. 33.
    Li Z, Yu X, Wang Y, Shen J, Wu WK, Liang J, Feng F: By downregulating tiam1 expression, microRNA-329 suppresses gastric cancer invasion and growth. Oncotarget. 2015;6:17559–69.Google Scholar
  34. 34.
    Li Z, Lei H, Luo M, Wang Y, Dong L, Ma Y, et al. DNA methylation downregulated mir-10b acts as a tumor suppressor in gastric cancer. Gastric cancer: official journal of the International Gastric Cancer Association and the Japanese Gastric Cancer Association. 2015;18:43–54.CrossRefGoogle Scholar
  35. 35.
    Yang Z, Han Y, Cheng K, Zhang G, Wang X. Mir-99a directly targets the mtor signalling pathway in breast cancer side population cells. Cell Prolif. 2014;47:587–95.CrossRefPubMedGoogle Scholar
  36. 36.
    Niu G, Li B, Sun J, Sun L. Mir-454 is down-regulated in osteosarcomas and suppresses cell proliferation and invasion by directly targeting c-met. Cell Prolif. 2015;48:348–55.CrossRefPubMedGoogle Scholar
  37. 37.
    Nagalakshmi VK, Ren Q, Pugh MM, Valerius MT, McMahon AP, Yu J. Dicer regulates the development of nephrogenic and ureteric compartments in the mammalian kidney. Kidney Int. 2011;79:317–30.CrossRefPubMedGoogle Scholar
  38. 38.
    Gowrishankar B, Ibragimova I, Zhou Y, Slifker MJ, Devarajan K, Al-Saleem T, et al. MicroRNA expression signatures of stage, grade, and progression in clear cell rcc. Cancer Biol Ther. 2014;15:329–41.CrossRefPubMedGoogle Scholar
  39. 39.
    Marrone AK, Stolz DB, Bastacky SI, Kostka D, Bodnar AJ, Ho J. MicroRNA-17 ~ 92 is required for nephrogenesis and renal function. JASN. 2014;25:1440–52.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Bartram MP, Dafinger C, Habbig S, Benzing T, Schermer B, Muller RU. Loss of dgcr8-mediated microRNA expression in the kidney results in hydronephrosis and renal malformation. BMC Nephrol. 2015;16:55.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Lu R, Ji Z, Li X, Zhai Q, Zhao C, Jiang Z, et al. Mir-145 functions as tumor suppressor and targets two oncogenes, angpt2 and nedd9, in renal cell carcinoma. J Cancer Res Clin Oncol. 2014;140:387–97.CrossRefPubMedGoogle Scholar
  42. 42.
    Wang Y, Lu X, He J, Zhao W. Influence of erythropoietin on microvesicles derived from mesenchymal stem cells protecting renal function of chronic kidney disease. Stem Cell Res Ther. 2015;6:100.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Sole C, Cortes-Hernandez J, Felip ML, Vidal M, Ordi-Ros J: Mir-29c in urinary exosomes as predictor of early renal fibrosis in lupus nephritis. Nephrology, dialysis, transplantation: official publication of the European Dialysis and Transplant Association- European Renal Association. 2015;30:1488–96.Google Scholar
  44. 44.
    Wei Q, Mi QS, Dong Z. The regulation and function of microRNAs in kidney diseases. IUBMB life. 2013;65:602–14.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Sun L, Zhu J, Wu M, Sun H, Zhou C, Fu L, et al. Inhibition of mir-199a-5p reduced cell proliferation in autosomal dominant polycystic kidney disease through targeting cdkn1c. Medical science monitor: international medical journal of experimental and clinical research. 2015;21:195–200.CrossRefGoogle Scholar
  46. 46.
    Lee JE, Hong EJ, Nam HY, Kim JW, Han BG, Jeon JP. MicroRNA signatures associated with immortalization of ebv-transformed lymphoblastoid cell lines and their clinical traits. Cell Prolif. 2011;44:59–66.CrossRefPubMedGoogle Scholar
  47. 47.
    Han K, Chen X, Bian N, Ma B, Yang T, Cai C, Fan Q, Zhou Y, Zhao T: MicroRNA profiling identifies mir-195 suppresses osteosarcoma cell metastasis by targeting ccnd1. Oncotarget. 2015;6:8875–89.Google Scholar
  48. 48.
    Song MY, Pan KF, Su HJ, Zhang L, Ma JL, Li JY, et al. Identification of serum microRNAs as novel non-invasive biomarkers for early detection of gastric cancer. PloS One. 2012;7:e33608.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Osanto S, Qin Y, Buermans HP, Berkers J, Lerut E, Goeman JJ, et al. Genome-wide microRNA expression analysis of clear cell renal cell carcinoma by next generation deep sequencing. PloS One. 2012;7:e38298.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Zeng X, Xiang J, Wu M, Xiong W, Tang H, Deng M, et al. Circulating mir-17, mir-20a, mir-29c, and mir-223 combined as non-invasive biomarkers in nasopharyngeal carcinoma. PloS One. 2012;7:e46367.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Colangelo V, Francois S, Solda G, Picco R, Roma F, Ginelli E, et al. Next-generation sequencing analysis of miRNA expression in control and fshd myogenesis. PloS One. 2014;9:e108411.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Wang JX, Hu Q, Liu QL, Wei Y. microRNA differential expression profile in nephroblastoma cell line versus normal embryonic kidney cell line. Zhonghua yi xue za zhi. 2010;90:1845–8.PubMedGoogle Scholar
  53. 53.
    Watson JA, Bryan K, Williams R, Popov S, Vujanic G, Coulomb A, et al. MiRNA profiles as a predictor of chemoresponsiveness in Wilms’ tumor blastema. PloS One. 2013;8:e53417.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Ludwig N, Nourkami-Tutdibi N, Backes C, Lenhof HP, Graf N, Keller A, et al. Circulating serum miRNAs as potential biomarkers for nephroblastoma. Pediatr Blood Cancer. 2015;62:1360–7.CrossRefPubMedGoogle Scholar
  55. 55.
    Brockway S, Zeleznik-Le NJ. Wee1 is a validated target of the microRNA mir-17-92 cluster in leukemia. Cancer Genet. 2015;208:279–87.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Battistella M, Romero M, Castro-Vega LJ, Gapihan G, Bouhidel F, Bagot M, et al. The high expression of the microRNA 17-92 cluster and its paralogs, and the downregulation of the target gene pten, is associated with primary cutaneous b-cell lymphoma progression. J Invest Dermatol. 2015;135:1659–67.CrossRefPubMedGoogle Scholar
  57. 57.
    Zhu H, Han C, Lu D, Wu T. Mir-17-92 cluster promotes cholangiocarcinoma growth: evidence for pten as downstream target and il-6/stat3 as upstream activator. Am J Pathol. 2014;184:2828–39.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Liu L, Qiu M, Tan G, Liang Z, Qin Y, Chen L, et al. Mir-200c inhibits invasion, migration and proliferation of bladder cancer cells through down-regulation of bmi-1 and e2f3. J Transl Med. 2014;12:305.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Libertini SJ, Chen H, Al-Bataina B, Koilvaram T, George M, Gao AC, et al. The interleukin 6 receptor is a direct transcriptional target of e2f3 in prostate tumor derived cells. The Prostate. 2012;72:649–60.CrossRefPubMedGoogle Scholar
  60. 60.
    Ren XS, Yin MH, Zhang X, Wang Z, Feng SP, Wang GX, et al. Tumor-suppressive microRNA-449a induces growth arrest and senescence by targeting e2f3 in human lung cancer cells. Cancer Lett. 2014;344:195–203.CrossRefPubMedGoogle Scholar
  61. 61.
    Woods K, Thomson JM, Hammond SM. Direct regulation of an oncogenic micro-RNA cluster by e2f transcription factors. J Biol Chem. 2007;282:2130–4.CrossRefPubMedGoogle Scholar
  62. 62.
    Kort EJ, Farber L, Tretiakova M, Petillo D, Furge KA, Yang XJ, et al. The e2f3-oncomir-1 axis is activated in Wilms’ tumor. Cancer Res. 2008;68:4034–8.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Veronese A, Lupini L, Consiglio J, Visone R, Ferracin M, Fornari F, et al. Oncogenic role of mir-483-3p at the igf2/483 locus. Cancer Res. 2010;70:3140–9.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Dong Y, Li J, Han F, Chen H, Zhao X, Qin Q, Shi R, Liu J: High igf2 expression is associated with poor clinical outcome in human ovarian cancer. Oncol Reports. 2015;34:936–42.Google Scholar
  65. 65.
    De Crescenzo A, Coppola F, Falco P, Bernardo I, Ausanio G, Cerrato F, et al. A novel microdeletion in the igf2/h19 imprinting centre region defines a recurrent mutation mechanism in familial Beckwith-Wiedemann syndrome. Eur J Med Genet. 2011;54:e451–454.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Hu Q, Gao F, Tian W, Ruteshouser EC, Wang Y, Lazar A, et al. Wt1 ablation and igf2 upregulation in mice result in Wilms’ tumors with elevated erk1/2 phosphorylation. J Clin Invest. 2011;121:174–83.CrossRefPubMedGoogle Scholar
  67. 67.
    Liu M, Roth A, Yu M, Morris R, Bersani F, Rivera MN, et al. The igf2 intronic mir-483 selectively enhances transcription from igf2 fetal promoters and enhances tumorigenesis. Genes Dev. 2013;27:2543–8.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Chen JL, Li J, Kiriluk KJ, Rosen AM, Paner GP, Antic T, et al. Deregulation of a hox protein regulatory network spanning prostate cancer initiation and progression. Clinical cancer research: an official journal of the American Association for Cancer Research. 2012;18:4291–302.CrossRefGoogle Scholar
  69. 69.
    Dekel B, Metsuyanim S, Schmidt-Ott KM, Fridman E, Jacob-Hirsch J, Simon A, et al. Multiple imprinted and stemness genes provide a link between normal and tumor progenitor cells of the developing human kidney. Cancer research. 2006;66:6040–9.CrossRefPubMedGoogle Scholar
  70. 70.
    Koller K, Pichler M, Koch K, Zandl M, Stiegelbauer V, Leuschner I, et al. Nephroblastomas show low expression of micror-204 and high expression of its target, the oncogenic transcription factor meis1. Pediatr Dev Pathol. 2014;17:169–75.CrossRefPubMedGoogle Scholar
  71. 71.
    Kahlert C, Lerbs T, Pecqueux M, Herpel E, Hoffmeister M, Jansen L, et. al. Overexpression of six1 is an independent prognostic marker in stage i-iii colorectal cancer. Int J Cancer. 2015;137:2104–13.Google Scholar
  72. 72.
    Imam JS, Buddavarapu K, Lee-Chang JS, Ganapathy S, Camosy C, Chen Y, et al. Microrna-185 suppresses tumor growth and progression by targeting the six1 oncogene in human cancers. Oncog. 2010;29:4971–9.CrossRefGoogle Scholar
  73. 73.
    Tang H, Liu P, Yang L, Xie X, Ye F, Wu M, et al. Mir-185 suppresses tumor proliferation by directly targeting e2f6 and dnmt1 and indirectly upregulating brca1 in triple-negative breast cancer. Mol Cancer Ther. 2014;13:3185–97.CrossRefPubMedGoogle Scholar
  74. 74.
    Qadir XV, Han C, Lu D, Zhang J, Wu T. Mir-185 inhibits hepatocellular carcinoma growth by targeting the dnmt1/pten/akt pathway. Am J Pathol. 2014;184:2355–64.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Tan Z, Jiang H, Wu Y, Xie L, Dai W, Tang H, et al. Mir-185 is an independent prognosis factor and suppresses tumor metastasis in gastric cancer. Mol Cell Biochem. 2014;386:223–31.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Xin Yu
    • 1
  • Zheng Li
    • 2
  • Matthew T V Chan
    • 3
  • William Ka Kei Wu
    • 3
    • 4
  1. 1.Department of DermatologyPeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
  2. 2.Department of Orthopaedic SurgeryPeking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
  3. 3.Department of Anaesthesia and Intensive CareThe Chinese University of Hong KongHong KongChina
  4. 4.State Key Laboratory of Digestive Disease, LKS Institute of Health SciencesThe Chinese University of Hong KongHong KongChina

Personalised recommendations