Advertisement

Tumor Biology

, Volume 37, Issue 5, pp 6217–6225 | Cite as

Functional characterization of the tumor suppressor CMTM8 and its association with prognosis in bladder cancer

  • Shiying Zhang
  • Xiaolei Pei
  • Hao Hu
  • Wenjuan Zhang
  • Xiaoning Mo
  • Quansheng Song
  • Yingmei Zhang
  • Kexin Xu
  • Ying Wang
  • Yanqun Na
Original Article

Abstract

Previous research revealed that CMTM8 acts as a tumor suppressor gene in variety cancers. However, the role of CMTM8 in bladder cancer has never been reported. In this study, the expression profile of CMTM8 was examined in bladder cancer tissues and bladder cancer cell lines. The effects of CMTM8 on bladder cancer cell proliferation, apoptosis, migration, and invasion were examined. Bladder tumor tissues from 84 cases were examined for CMTM8 expression by immunohistochemistry. Disease-specific survival was investigated using a Kaplan-Meier analysis, and Cox proportional hazards analysis was assessed. Our results showed that upregulation of CMTM8 in the T24 cell line could suppress T24 cells proliferation, migration and invasion and enhance the sensitivity to Epirubicin. Kaplan-Meier analysis revealed that the expression of CMTM8 was correlated with the survival time of bladder cancer patients. Altogether, our data suggested that CMTM8 is an important tumor suppressor gene in human bladder cancer and qualified as a useful prognostic indicator for patients with bladder cancer.

Keywords

CMTM8 Bladder cancer Tumor suppressor Survival Prognosis 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant 81272830 and 31200673) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (20120001110001).

Compliance with ethical standards

This study of tissue was performed under a protocol approved by the Ethics Committee of Peking University People’s Hospital and all procedures were performed after obtaining written informed consents.

Conflicts of interest

None.

References

  1. 1.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90. doi: 10.3322/caac.20107.CrossRefPubMedGoogle Scholar
  2. 2.
    Bachir BG, Aprikian AG, Fradet Y, Chin JL, Izawa J, Rendon R, et al. Regional differences in practice patterns and outcomes in patients treated with radical cystectomy in a universal healthcare system. Canadian Urological Association journal = Journal de l’Association des urologues du Canada. 2013;7(11–12):E667–72. doi: 10.5489/cuaj.201.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Tilki D, Reich O, Svatek RS, Karakiewicz PI, Kassouf W, Novara G, et al. Characteristics and outcomes of patients with clinical carcinoma in situ only treated with radical cystectomy: an international study of 243 patients. J Urol. 2010;183(5):1757–63. doi: 10.1016/j.juro.2010.01.025.CrossRefPubMedGoogle Scholar
  4. 4.
    Sangar VK, Ragavan N, Matanhelia SS, Watson MW, Blades RA. The economic consequences of prostate and bladder cancer in the UK. BJU Int. 2005;95(1):59–63. doi: 10.1111/j.1464-410X.2005.05249.x.CrossRefPubMedGoogle Scholar
  5. 5.
    Han W, Ding P, Xu M, Wang L, Rui M, Shi S, et al. Identification of eight genes encoding chemokine-like factor superfamily members 1–8 (CKLFSF1-8) by in silico cloning and experimental validation. Genomics. 2003;81(6):609–17.CrossRefPubMedGoogle Scholar
  6. 6.
    Jin C, Ding P, Wang Y, Ma D. Regulation of EGF receptor signaling by the MARVEL domain-containing protein CKLFSF8. FEBS Lett. 2005;579(28):6375–82. doi: 10.1016/j.febslet.2005.10.021.CrossRefPubMedGoogle Scholar
  7. 7.
    Li D, Jin C, Yin C, Zhang Y, Pang B, Tian L, et al. An alternative splice form of CMTM8 induces apoptosis. Int J Biochem Cell Biol. 2007;39(11):2107–19. doi: 10.1016/j.biocel.2007.06.002.CrossRefPubMedGoogle Scholar
  8. 8.
    Jin C, Wang Y, Han W, Zhang Y, He Q, Li D, et al. CMTM8 induces caspase-dependent and -independent apoptosis through a mitochondria-mediated pathway. J Cell Physiol. 2007;211(1):112–20. doi: 10.1002/jcp.20914.CrossRefPubMedGoogle Scholar
  9. 9.
    Zhang W, Mendoza MC, Pei X, Ilter D, Mahoney SJ, Zhang Y, et al. Down-regulation of CMTM8 induces epithelial-to-mesenchymal transition-like changes via c-MET/extracellular signal-regulated kinase (ERK) signaling. J Biol Chem. 2012;287(15):11850–8. doi: 10.1074/jbc.M111.258236.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Neal DE, Marsh C, Bennett MK, Abel PD, Hall RR, Sainsbury JR, et al. Epidermal-growth-factor receptors in human bladder cancer: comparison of invasive and superficial tumours. Lancet. 1985;1(8425):366–8.CrossRefPubMedGoogle Scholar
  11. 11.
    Black PC, Dinney CP. Growth factors and receptors as prognostic markers in urothelial carcinoma. Curr Urol Rep. 2008;9(1):55–61.CrossRefPubMedGoogle Scholar
  12. 12.
    Schafer B, Gschwind A, Ullrich A. Multiple G-protein-coupled receptor signals converge on the epidermal growth factor receptor to promote migration and invasion. Oncogene. 2004;23(4):991–9. doi: 10.1038/sj.onc.1207278.CrossRefPubMedGoogle Scholar
  13. 13.
    Batsi O, Giannopoulou I, Nesseris I, Valavanis C, Gakiopoulou H, Patsouris ES, et al. Immunohistochemical evaluation of CXCL12-CXCR4 axis and VEGFR3 expression in primary urothelial cancer and its recurrence. Anticancer Res. 2014;34(7):3537–42.PubMedGoogle Scholar
  14. 14.
    Eisenhardt A, Frey U, Tack M, Rosskopf D, Lummen G, Rubben H, et al. Expression analysis and potential functional role of the CXCR4 chemokine receptor in bladder cancer. Eur Urol. 2005;47(1):111–7. doi: 10.1016/j.eururo.2004.10.001.CrossRefPubMedGoogle Scholar
  15. 15.
    Epstein JI, Amin MB, Reuter VR, Mostofi FK. The World Health Organization/International Society of Urological Pathology consensus classification of urothelial (transitional cell) neoplasms of the urinary bladder. Bladder Consensus Conference Committee. Am J Surg Pathol. 1998;22(12):1435–48.CrossRefPubMedGoogle Scholar
  16. 16.
    Hour TC, Chung SD, Kang WY, Lin YC, Chuang SJ, Huang AM, et al. EGFR mediates docetaxel resistance in human castration-resistant prostate cancer through the Akt-dependent expression of ABCB1 (MDR1). Arch Toxicol. 2015;89(4):591–605. doi: 10.1007/s00204-014-1275-x.CrossRefPubMedGoogle Scholar
  17. 17.
    Germano S, O’Driscoll L. Breast cancer: understanding sensitivity and resistance to chemotherapy and targeted therapies to aid in personalised medicine. Curr Cancer Drug Targets. 2009;9(3):398–418.CrossRefPubMedGoogle Scholar
  18. 18.
    Burger JA, Peled A. CXCR4 antagonists: targeting the microenvironment in leukemia and other cancers. Leukemia. 2009;23(1):43–52. doi: 10.1038/leu.2008.299.CrossRefPubMedGoogle Scholar
  19. 19.
    Sanchez-Pulido L, Martin-Belmonte F, Valencia A, Alonso MA. MARVEL: a conserved domain involved in membrane apposition events. Trends Biochem Sci. 2002;27(12):599–601.CrossRefPubMedGoogle Scholar
  20. 20.
    Pearse BM, Smith CJ, Owen DJ. Clathrin coat construction in endocytosis. Curr Opin Struct Biol. 2000;10(2):220–8.CrossRefPubMedGoogle Scholar
  21. 21.
    Le Roy C, Wrana JL. Clathrin- and non-clathrin-mediated endocytic regulation of cell signalling. Nat Rev Mol Cell Biol. 2005;6(2):112–26. doi: 10.1038/nrm1571.CrossRefPubMedGoogle Scholar
  22. 22.
    Lajoie P, Goetz JG, Dennis JW, Nabi IR. Lattices, rafts, and scaffolds: domain regulation of receptor signaling at the plasma membrane. J Cell Biol. 2009;185(3):381–5. doi: 10.1083/jcb.200811059.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Vieira AV, Lamaze C, Schmid SL. Control of EGF receptor signaling by clathrin-mediated endocytosis. Science. 1996;274(5295):2086–9.CrossRefPubMedGoogle Scholar
  24. 24.
    Hammond DE, Carter S, McCullough J, Urbe S, Vande Woude G, Clague MJ. Endosomal dynamics of Met determine signaling output. Mol Biol Cell. 2003;14(4):1346–54. doi: 10.1091/mbc.E02-09-0578.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Marchese A, Benovic JL. Agonist-promoted ubiquitination of the G protein-coupled receptor CXCR4 mediates lysosomal sorting. J Biol Chem. 2001;276(49):45509–12. doi: 10.1074/jbc.C100527200.CrossRefPubMedGoogle Scholar
  26. 26.
    Gacche RN, Meshram RJ. Targeting tumor micro-environment for design and development of novel anti-angiogenic agents arresting tumor growth. Prog Biophys Mol Biol. 2013;113(2):333–54. doi: 10.1016/j.pbiomolbio.2013.10.001.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Shiying Zhang
    • 1
  • Xiaolei Pei
    • 2
  • Hao Hu
    • 1
  • Wenjuan Zhang
    • 3
  • Xiaoning Mo
    • 2
  • Quansheng Song
    • 2
  • Yingmei Zhang
    • 2
  • Kexin Xu
    • 1
  • Ying Wang
    • 2
  • Yanqun Na
    • 1
  1. 1.Department of UrologyPeking University People’s HospitalBeijingChina
  2. 2.Department of Immunology, School of Basic Medical Sciences, and Key Laboratory of Medical Immunology of Ministry of HealthPeking University Health Science CenterBeijingChina
  3. 3.National Institutes for Food and Drug ControlBeijingChina

Personalised recommendations