Tumor Biology

, Volume 37, Issue 5, pp 6813–6821 | Cite as

miR-615-5p prevents proliferation and migration through negatively regulating serine hydromethyltransferase 2 (SHMT2) in hepatocellular carcinoma

  • Xiaoyu Wu
  • Liang Deng
  • Decai Tang
  • Gang Ying
  • Xuequan Yao
  • Fukun Liu
  • Gui Liang
Original Article

Abstract

It has been reported that miR-615-5p was upregulated in hepatocellular carcinoma (HCC) preventing both growth and migration. However, the underlying mechanism by which miR-615-5p played a role in HCC remains unknown. Here, in our present study, to investigate the mechanism of miR-615-5p, bioinformatic prediction and luciferase reporter assay were employed to ascertain the downstream target of miR-615-5p finding that the serine hydromethyltransferase 2 (SHMT2) was the direct downstream target. Knockdown or overexpression of miR-615-5p can lead to increasing or decreasing expression of SHMT2 in HCC cells. Besides, knockdown or overexpression of SHMT2 can suppress or promote both proliferation and migration of HCC cells, indicating that miR-615-5p can directly and negatively regulate the SHMT2 in HCC cells. In addition, to understand the clinicopathological significance of SHMT2 expression in HCC, immunohistochemistry was performed. It was found that SHMT2 expression was significantly associated with poor prognosis and TNM stage. Together, our results for the first time showed that miR-615-5p prevents proliferation and migration through negatively regulating SHMT2 in HCC.

Keywords

Hepatocellular carcinoma (HCC) miR-615-5p SHMT2 Proliferation Migration 

Notes

Acknowledgments

The present work was supported by the National Science Foundation of China (NFSC no. 81373990 and 81402523).

Compliance with ethical standards

Conflicts of interest

None

Supplementary material

13277_2015_4506_MOESM1_ESM.docx (2.4 mb)
ESM 1 (DOCX 2469 kb)

References

  1. 1.
    Galun D, Basaric D, Zuvela M, Bulajic P, Bogdanovic A, Bidzic N, et al. Hepatocellular carcinoma: from clinical practice to evidence-based treatment protocols. World J Hepatol. 2015;7(20):2274–91.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Mazzola A, Costantino A, Petta S, Bartolotta TV, Raineri M, Sacco R, Brancatelli G, Camma C, Cabibbo G. Recurrence of hepatocellular carcinoma after liver transplantation: an update. Future Oncol. 2015.Google Scholar
  3. 3.
    Palmer DH, Johnson PJ. Evaluating the role of treatment-related toxicities in the challenges facing targeted therapies for advanced hepatocellular carcinoma. Cancer Metastasis Rev. 2015;34(3):497–509.CrossRefPubMedGoogle Scholar
  4. 4.
    Mao B, Wang G. MicroRNAs involved with hepatocellular carcinoma (review). Oncol Rep. 2015.Google Scholar
  5. 5.
    Giordano S, Columbano A. MicroRNAs: new tools for diagnosis, prognosis, and therapy in hepatocellular carcinoma? Hepatology. 2013;57(2):840–7.CrossRefPubMedGoogle Scholar
  6. 6.
    El Tayebi HM, Hosny KA, Esmat G, Breuhahn K, Abdelaziz AI. miR-615-5p is restrictedly expressed in cirrhotic and cancerous liver tissues and its overexpression alleviates the tumorigenic effects in hepatocellular carcinoma. FEBS Lett. 2012;586(19):3309–16.CrossRefPubMedGoogle Scholar
  7. 7.
    Gao W, Gu Y, Li Z, Cai H, Peng Q, Tu M, et al. miR-615-5p is epigenetically inactivated and functions as a tumor suppressor in pancreatic ductal adenocarcinoma. Oncogene. 2015;34(13):1629–40.CrossRefPubMedGoogle Scholar
  8. 8.
    Song LJ, Zhang WJ, Chang ZW, Pan YF, Zong H, Fan QX, et al. PU.1 is identified as a novel metastasis suppressor in hepatocellular carcinoma regulating the miR-615-5p/IGF2 axis. Asian Pac J Cancer Prev: APJCP. 2015;16(9):3667–71.CrossRefPubMedGoogle Scholar
  9. 9.
    Betel D, Wilson M, Gabow A, Marks DS, Sander C. The microRNA.org resource: targets and expression. Nucleic Acids Res. 2008;36(Database issue):D149–153.PubMedGoogle Scholar
  10. 10.
    Welten SM, Bastiaansen AJ, de Jong RC, de Vries MR, Peters EA, Boonstra MC, et al. Inhibition of 14q32 microRNAs miR-329, miR-487b, miR-494, and miR-495 increases neovascularization and blood flow recovery after ischemia. Circ Res. 2014;115(8):696–708.CrossRefPubMedGoogle Scholar
  11. 11.
    Hulf T, Sibbritt T, Wiklund ED, Bert S, Strbenac D, Statham AL, et al. Discovery pipeline for epigenetically deregulated miRNAs in cancer: integration of primary miRNA transcription. BMC Genomics. 2011;12:54.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Jiang Y, Zhang Y, Li F, Du X, Zhang J. CDX2 inhibits pancreatic adenocarcinoma cell proliferation via promoting tumor suppressor miR-615-5p. Tumour Biol: J Int Soc Oncodev Biol Med. 2015.Google Scholar
  13. 13.
    Sun Y, Zhang T, Wang C, Jin X, Jia C, Yu S, et al. MiRNA-615-5p functions as a tumor suppressor in pancreatic ductal adenocarcinoma by targeting AKT2. PLoS One. 2015;10(4):e0119783.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Hebbring SJ, Chai Y, Ji Y, Abo RP, Jenkins GD, Fridley B, et al. Serine hydroxymethyltransferase 1 and 2: gene sequence variation and functional genomic characterization. J Neurochem. 2012;120(6):881–90.PubMedPubMedCentralGoogle Scholar
  15. 15.
    di Salvo ML, Contestabile R, Paiardini A, Maras B. Glycine consumption and mitochondrial serine hydroxymethyltransferase in cancer cells: the heme connection. Med Hypotheses. 2013;80(5):633–6.CrossRefPubMedGoogle Scholar
  16. 16.
    Leivonen SK, Rokka A, Ostling P, Kohonen P, Corthals GL, Kallioniemi O, et al. Identification of miR-193b targets in breast cancer cells and systems biological analysis of their functional impact. Mol Cellular Proteomics. 2011;10(7):M110 005322.CrossRefGoogle Scholar
  17. 17.
    Antonov A, Agostini M, Morello M, Minieri M, Melino G, Amelio I. Bioinformatics analysis of the serine and glycine pathway in cancer cells. Oncotarget. 2014;5(22):11004–13.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Lee GY, Haverty PM, Li L, Kljavin NM, Bourgon R, Lee J, et al. Comparative oncogenomics identifies PSMB4 and SHMT2 as potential cancer driver genes. Cancer Res. 2014;74(11):3114–26.CrossRefPubMedGoogle Scholar
  19. 19.
    Kim D, Fiske BP, Birsoy K, Freinkman E, Kami K, Possemato RL, et al. SHMT2 drives glioma cell survival in ischaemia but imposes a dependence on glycine clearance. Nature. 2015;520(7547):363–7.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Ye J, Fan J, Venneti S, Wan YW, Pawel BR, Zhang J, et al. Serine catabolism regulates mitochondrial redox control during hypoxia. Cancer Dis. 2014;4(12):1406–17.CrossRefGoogle Scholar
  21. 21.
    Kaplan RM, Chambers DA, Glasgow RE. Big data and large sample size: a cautionary note on the potential for bias. Clin Trans Sci. 2014;7(4):342–6.CrossRefGoogle Scholar
  22. 22.
    Bridges AJ, Holler KA. How many is enough? Determining optimal sample sizes for normative studies in pediatric neuropsychology. Child Neuropsychol. 2007;13(6):528–38.CrossRefPubMedGoogle Scholar
  23. 23.
    Baker M. Reproducibility crisis: blame it on the antibodies. Nature. 2015;521(7552):274–6.CrossRefPubMedGoogle Scholar
  24. 24.
    Holmseth S, Zhou Y, Follin-Arbelet VV, Lehre KP, Bergles DE, Danbolt NC. Specificity controls for immunocytochemistry: the antigen preadsorption test can lead to inaccurate assessment of antibody specificity. J Histochem Cytochem. 2012;60(3):174–87.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Jiang T, Wang H. Identification of cross-contamination in SH-SY5Y cell line. Hum Cell. 2014;27(4):176–8.CrossRefPubMedGoogle Scholar
  26. 26.
    International Cell Line Authentication C. Cell line cross-contamination: WSU-CLL is a known derivative of REH and is unsuitable as a model for chronic lymphocytic leukaemia. Leuk Res. 2014;38(8):999–1001.CrossRefGoogle Scholar
  27. 27.
    Dirks WG, MacLeod RA, Nakamura Y, Kohara A, Reid Y, Milch H, et al. Cell line cross-contamination initiative: an interactive reference database of STR profiles covering common cancer cell lines. Int J Cancer. 2010;126(1):303–4.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Xiaoyu Wu
    • 1
  • Liang Deng
    • 2
  • Decai Tang
    • 3
  • Gang Ying
    • 3
  • Xuequan Yao
    • 3
  • Fukun Liu
    • 3
  • Gui Liang
    • 4
  1. 1.Department of Surgical OncologyAffiliated Hospital of Nanjing University of Traditional Chinese MedicineNanjingChina
  2. 2.Department of Hepatobiliary Surgery, the Eastern Hospital of the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510700, China.Sun Yat-sen UniversityGuangzhouChina
  3. 3.Nanjing University of Traditional Chinese MedicineNanjingChina
  4. 4.Department of General Surgery, Jiangsu Cancer HospitalThe Affiliated Cancer Hospital of Nanjing Medical UniversityNanjingChina

Personalised recommendations