Tumor Biology

, Volume 37, Issue 5, pp 6227–6238 | Cite as

13-Oxyingenol dodecanoate, a cytotoxic ingenol derivative, induces mitochondrial apoptosis and caspase-dependent Akt decrease in K562 cells

  • Ming Liu
  • Weiyi Zhang
  • Genzhu Wang
  • Xiaoping Song
  • Xingzeng Zhao
  • Xiangyun Wang
  • Xin Qi
  • Jing Li
Original Article

Abstract

13-Oxyingenol dodecanoate (13OD) is an ingenol derivative prepared from Chinese traditional medicine Euphorbia kansui without any report about its bioactivity. The present study demonstrated for the first time that 13OD displayed potent cytotoxicity against chronic myeloid leukemia K562 cells in vitro. 13OD inhibited proliferation, induced G2/M phase arrest, and exhibited potent apoptotic activity in K562 cells. In K562 cells, 13OD disrupted the mitochondrial membrane potential and induced high level of ROS, which played an indispensable role in 13OD-induced apoptosis. Further investigations on the molecular mechanisms revealed that total Akt protein level was decreased in a caspase-dependent way after treatment with 13OD; in addition, ERK was activated by 13OD, and this activation played a protective role in 13OD stimulation. Altogether, these results revealed that the cytotoxic ingenol derivative 13OD induced apoptosis with novel mechanisms for the proapoptotic function in cancer cells, and suggested that 13OD may serve as a lead template for rational drug design and for future anticancer agent development.

Keywords

13-Oxyingenol dodecanoate Apoptosis Euphorbia kansui mTOR Akt 

Notes

Acknowledgments

This work was supported by the NSFC-Shandong Joint Fund (No. U1406402), the Natural Science Foundation of China (No. 81373323), the Natural Science Foundation of the Shandong Province (No. ZR2012CM005, No. ZR2015HM010), and the Young Talent Project at Ocean University of China (No. 201412007).

Compliance with ethical standards

Conflicts of interest

None

References

  1. 1.
    Weisberg E, Manley PW, Cowan-Jacob SW, Hochhaus A, Griffin JD. Second generation inhibitors of BCR-ABL for the treatment of imatinib-resistant chronic myeloid leukaemia. Nat Rev Cancer. 2007;7(5):345–56.CrossRefPubMedGoogle Scholar
  2. 2.
    Steelman LS, Pohnert SC, Shelton JG, Franklin RA, Bertrand FE, McCubrey JA. JAK//STAT, Raf//MEK//ERK, PI3K//Akt and BCR-ABL in cell cycle progression and leukemogenesis. Leukemia. 2004;18(2):189–218.CrossRefPubMedGoogle Scholar
  3. 3.
    Burchert A, Wang Y, Cai D, von Bubnoff N, Paschka P, Muller-Brusselbach S, et al. Compensatory PI3-kinase/Akt/mTor activation regulates imatinib resistance development. Leukemia. 2005;19(10):1774–82.CrossRefPubMedGoogle Scholar
  4. 4.
    Wong S-F, Mirshahidi H. Use of tyrosine kinase inhibitors for chronic myeloid leukemia: management of patients and practical applications for pharmacy practitioners. Ann Pharmacother. 2011;45(6):787–97. doi: 10.1345/aph.1P784.CrossRefPubMedGoogle Scholar
  5. 5.
    Roychowdhury S, Talpaz M. Managing resistance in chronic myeloid leukemia. Blood Rev. 2011;25(6):279–90. doi: 10.1016/j.blre.2011.09.001.CrossRefPubMedGoogle Scholar
  6. 6.
    Abreu CM, Price SL, Shirk EN, Cunha RD, Pianowski LF, Clements JE et al. Dual role of novel ingenol derivatives from Euphorbia tirucalli in HIV replication: inhibition of de novo infection and activation of viral LTR. PLoS One. 2014;9(5).Google Scholar
  7. 7.
    Jiang G, Mendes EA, Kaiser P, Sankaran-Walters S, Tang Y, Weber MG, et al. Reactivation of HIV latency by a newly modified ingenol derivative via protein kinase Cdelta-NF-kappaB signaling. Aids. 2014;28(11):1555–66.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Fujiwara M, Ijichi K, Konno K, Yokota T, Tokuhisa K, Katsuura K, et al. Ingenol derivatives, ingredient of ‘Kansui’, are highly potent inhibitor of HIV. Antivir Res. 1995;26(3):A228. doi: 10.1016/0166-3542(95)94704-6.CrossRefGoogle Scholar
  9. 9.
    Benhadji KA, Serova M, Ghoul A, Cvitkovic E, Le Tourneau C, Ogbourne SM, et al. Antiproliferative activity of PEP005, a novel ingenol angelate that modulates PKC functions, alone and in combination with cytotoxic agents in human colon cancer cells. Br J Cancer. 2008;99(11):1808–15.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Liang X, Grue-Sorensen G, Mansson K, Vedso P, Soor A, Stahlhut M, et al. Syntheses, biological evaluation and SAR of ingenol mebutate analogues for treatment of actinic keratosis and non-melanoma skin cancer. Bioorg Med Chem Lett. 2013;23(20):5624–9.CrossRefPubMedGoogle Scholar
  11. 11.
    Aditya S, Gupta S. Ingenol mebutate: a novel topical drug for actinic keratosis. Indian Dermatol Online J. 2013;4(3):246–9. doi: 10.4103/2229-5178.115538.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Tzogani K, Nagercoil N, Hemmings RJ, Samir B, Gardette J, Demolis P, et al. The European medicines agency approval of ingenol mebutate (Picato) for the cutaneous treatment of non-hyperkeratotic, non-hypertrophic actinic keratosis in adults: Summary of the scientific assessment of the committee for medicinal products for human use (CHMP). Eur J Dermatol. 2014;24(4):457–63.PubMedGoogle Scholar
  13. 13.
    Uemura D, Hirata Y, Yuh-Pan C, Hong-Yen H. New diterpene, 13-oxyingenol, derivative isolated from euphorbia kansui liou. Tetrahedron Lett. 1974;15(29):2529–32. doi: 10.1016/S0040-4039(01)93197-1.CrossRefGoogle Scholar
  14. 14.
    Song X, Zhao Z, Qi X, Tang S, Wang Q, Zhu T et al. Identification of epipolythiodioxopiperazines HDN-1 and chaetocin as novel inhibitor of heat shock protein 90. Oncotarget. 2015;6(7):5263–74.Google Scholar
  15. 15.
    Brunelle JK, Letai A. Control of mitochondrial apoptosis by the Bcl-2 family. J Cell Sci. 2009;122(Pt 4):437–41.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Zeng C-W, Zhang X-J, Lin K-Y, Ye H, Feng S-Y, Zhang H, et al. Camptothecin induces apoptosis in cancer cells via microRNA-125b-mediated mitochondrial pathways. Mol Pharmacol. 2012;81(4):578–86. doi: 10.1124/mol.111.076794.CrossRefPubMedGoogle Scholar
  17. 17.
    Timme CR, Gruidl M, Yeatman TJ. Gamma-secretase inhibition attenuates oxaliplatin-induced apoptosis through increased Mcl-1 and/or Bcl-xL in human colon cancer cells. Apoptosis. 2013;18(10):1163–74.CrossRefPubMedGoogle Scholar
  18. 18.
    Hampson P, Chahal H, Khanim F, Hayden R, Mulder A, Assi LK, et al. PEP005, a selective small-molecule activator of protein kinase C, has potent antileukemic activity mediated via the delta isoform of PKC. Blood. 2005;106(4):1362–8.CrossRefPubMedGoogle Scholar
  19. 19.
    Bhagatte Y, Lodwick D, Storey N. Mitochondrial ROS production and subsequent ERK phosphorylation are necessary for temperature preconditioning of isolated ventricular myocytes. Cell Death Dis. 2012;5(3):84.Google Scholar
  20. 20.
    Wang X, Martindale JL, Holbrook NJ. Requirement for ERK activation in cisplatin-induced apoptosis. J Biol Chem. 2000;275(50):39435–43.CrossRefPubMedGoogle Scholar
  21. 21.
    Mann KK, Colombo M, Miller Jr WH. Arsenic trioxide decreases AKT protein in a caspase-dependent manner. Mol Cancer Ther. 2008;7(6):1680–7.CrossRefPubMedGoogle Scholar
  22. 22.
    Kim T, Keum G, Pae AN. Discovery and development of heat shock protein 90 inhibitors as anticancer agents: a review of patented potent geldanamycin derivatives. Expert Opin Ther Pat. 2013;23(8):919–43.CrossRefPubMedGoogle Scholar
  23. 23.
    Beck R, Dejeans N, Glorieux C, Creton M, Delaive E, Dieu M, et al. Hsp90 is cleaved by reactive oxygen species at a highly conserved N-terminal amino acid motif. PLoS One. 2012;7(7):e40795. doi: 10.1371/journal.pone.0040795.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Basso AD, Solit DB, Chiosis G, Giri B, Tsichlis P, Rosen N. Akt forms an intracellular complex with heat shock protein 90 (Hsp90) and Cdc37 and is destabilized by inhibitors of Hsp90 function. J Biol Chem. 2002;277(42):39858–66.CrossRefPubMedGoogle Scholar
  25. 25.
    Martin D, Salinas M, Fujita N, Tsuruo T, Cuadrado A. Ceramide and reactive oxygen species generated by H2O2 induce caspase-3-independent degradation of Akt/protein kinase B. J Biol Chem. 2002;277(45):42943–52.CrossRefPubMedGoogle Scholar
  26. 26.
    Nambudiri V. From home remedy to cancer treatment: a history of ingenol mebutate and euphorbia peplus in dermatology. J Am Acad Dermatol. 2013;68(4, Supplement 1):AB33. doi: 10.1016/j.jaad.2012.12.141.Google Scholar
  27. 27.
    Kroemer G. Mitochondrial control of apoptosis: an introduction. Biochem Biophys Res Commun. 2003;304(3):433–5.CrossRefPubMedGoogle Scholar
  28. 28.
    Fulda S, Debatin KM. Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene. 2006;25(34):4798–811. doi: 10.1038/sj.onc.1209608.CrossRefPubMedGoogle Scholar
  29. 29.
    Polivka Jr J, Janku F. Molecular targets for cancer therapy in the PI3K/AKT/mTOR pathway. Pharmacol Ther. 2014;142(2):164–75. doi: 10.1016/j.pharmthera.2013.12.004.CrossRefPubMedGoogle Scholar
  30. 30.
    Serova M, Ghoul A, Benhadji KA, Faivre S, Le Tourneau C, Cvitkovic E, et al. Effects of protein kinase C modulation by PEP005, a novel ingenol angelate, on mitogen-activated protein kinase and phosphatidylinositol 3-kinase signaling in cancer cells. Mol Cancer Ther. 2008;7(4):915–22.CrossRefPubMedGoogle Scholar
  31. 31.
    Mas VM, Hernandez H, Plo I, Bezombes C, Maestre N, Quillet-Mary A, et al. Protein kinase Czeta mediated Raf-1/extracellular-regulated kinase activation by daunorubicin. Blood. 2003;101(4):1543–50.CrossRefPubMedGoogle Scholar
  32. 32.
    Xiao RZ, He CM, Xiong MJ, Ruan XX, Wang LL, Chen Y, et al. Inhibition of extracellular signal-regulated kinase activity by sorafenib increases sensitivity to DNR in K562 cells. Oncol Rep. 2013;29(5):1895–901.PubMedGoogle Scholar
  33. 33.
    Gores GJ, Kaufmann SH. Selectively targeting Mcl-1 for the treatment of acute myelogenous leukemia and solid tumors. Genes Dev. 2012;26(4):305–11.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Kedei N, Lundberg DJ, Toth A, Welburn P, Garfield SH, Blumberg PM. Characterization of the interaction of ingenol 3-angelate with protein kinase C. Cancer Res. 2004;64(9):3243–55.CrossRefPubMedGoogle Scholar
  35. 35.
    Medina EA, Afsari RR, Ravid T, Castillo SS, Erickson KL, Goldkorn T. Tumor necrosis factor-{alpha} decreases Akt protein levels in 3T3-L1 adipocytes via the caspase-dependent ubiquitination of Akt. Endocrinology. 2005;146(6):2726–35.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Ming Liu
    • 1
  • Weiyi Zhang
    • 1
  • Genzhu Wang
    • 1
  • Xiaoping Song
    • 1
  • Xingzeng Zhao
    • 2
  • Xiangyun Wang
    • 3
  • Xin Qi
    • 1
  • Jing Li
    • 1
  1. 1.Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and PharmacyOcean University of ChinaQingdaoChina
  2. 2.Institute of BotanyJiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden, Mem. Sun Yat-sen)NanjingChina
  3. 3.Nanjing Spring & Autumn Biological Engineering Co., Ltd, ChinaNanjingChina

Personalised recommendations