Advertisement

Tumor Biology

, Volume 37, Issue 5, pp 6681–6689 | Cite as

Upregulation of PTEN suppresses invasion in Tca8113 tongue cancer cells through repression of epithelial–mesenchymal transition (EMT)

  • Siming Xie
  • Zhiyuan Lu
  • Yanzhu Lin
  • Lijia Shen
  • Cao Yin
Original Article

Abstract

We previously discovered that the expression of the tumor suppressor phosphatase and tensin homolog (PTEN) was downregulated in the majority patients with tongue squamous cell carcinoma (TSCC). The aim of this study was to investigate the role of PTEN overexpression in the regulation of epithelial–mesenchymal transition (EMT) of the tongue squamous carcinoma cell line Tca8113 as well as explore the underlying mechanism. GV230 (containing the PTEN gene) and empty vectors were transfected into Tca8113 cells. After stable transfection, the messenger RNA (mRNA) and protein levels of PTEN were validated using quantitative real-time PCR (qPCR) and Western blot analysis. The growth and cell cycle were analyzed using Cell Counting Kit-8 (CCK-8) and flow cytometry, respectively. The invasion ability was measured with a transwell assay. The effects of PTEN overexpression on EMT and Hedgehog signaling were assessed by comparing Tca8113-PTEN cells with control and negative control cell groups. We found that PTEN expression was significantly upregulated after transfection. Meanwhile, upregulated PTEN inhibited the proliferation and invasion of Tca8113 cells. In addition, we observed changes in the EMT- and Hedgehog-associated proteins. These data demonstrated that PTEN upregulation could reduce invasion by inhibiting the process of EMT in Tca8113 cells, which might be related to the Hedgehog signaling pathway.

Keywords

PTEN EMT Tongue squamous cell carcinoma Invasion 

Notes

Acknowledgments

This work was supported by the Science and Technology Planning Project of Guangdong Province (2011B080701054) and the Fundamental Research Funds for the Central Universities (Innovation funds of Jinan University, 21615418).

Compliance with ethical standards

Conflicts of interest

None

References

  1. 1.
    Mao L, Hong WK, Papadimitrakopoulou VA. Focus on head and neck cancer. Cancer Cell. 2004;5:311–6.CrossRefPubMedGoogle Scholar
  2. 2.
    Davis SJ, Divi V, Owen JH, Bradford CR, Carey TE, Papagerakis S, et al. Metastatic potential of cancer stem cells in head and neck squamous cell carcinoma. Arch Otolaryngol Head Neck Surg. 2010;136:1260–6.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Song MS, Salmena L, Pandolfi PP. The functions and regulation of the PTEN tumour suppressor. Nat Rev Mol Cell Biol. 2012;13:283–96.PubMedGoogle Scholar
  4. 4.
    Chu EC, Tarnawski AS. PTEN regulatory functions in tumor suppression and cell biology. Med Sci Monit. 2004;10:RA235–41.PubMedGoogle Scholar
  5. 5.
    Colakoglu T, Yildirim S, Kayaselcuk F, Nursal TZ, Ezer A, Noyan T, et al. Clinicopathological significance of pten loss and the phosphoinositide 3-kinase/Akt pathway in sporadic colorectal neoplasms: Is PTEN loss predictor of local recurrence? Am J Surg. 2008;195:719–25.CrossRefPubMedGoogle Scholar
  6. 6.
    Rychahou PG, Kang J, Gulhati P, Doan HQ, Chen LA, Xiao SY, et al. Akt2 overexpression plays a critical role in the establishment of colorectal cancer metastasis. Proc Natl Acad Sci U S A. 2008;105:20315–20.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Yao SXLSCYPRX. Expression of tumor suppressor gene PTEN, PIP3 and cyclin D1 in oral squamous cell carcinoma and their correlation. Chin J Stomatol. 2006;41:407–10.Google Scholar
  8. 8.
    Shen CYRHHJZLSXYGL. Expression and the correlation of PTEN and CXCR4 protein in oral squamous cell carcinoma and precancerous lesions. J Dent Prev Treat. 2015;23:61–5.Google Scholar
  9. 9.
    Thompson EW, Newgreen DF, Tarin D. Carcinoma invasion and metastasis: a role for epithelial-mesenchymal transition? Cancer Res. 2005;65:5991–5. discussion 5995.CrossRefPubMedGoogle Scholar
  10. 10.
    Zhou BB, Zhang H, Damelin M, Geles KG, Grindley JC, Dirks PB. Tumour-initiating cells: challenges and opportunities for anticancer drug discovery. Nat Rev Drug Discov. 2009;8:806–23.CrossRefPubMedGoogle Scholar
  11. 11.
    Huber MA, Kraut N, Beug H. Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol. 2005;17:548–58.CrossRefPubMedGoogle Scholar
  12. 12.
    Garg M. Epithelial-mesenchymal transition—activating transcription factors—multifunctional regulators in cancer. World J Stem Cells. 2013;5:188–95.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Zeisberg M, Neilson EG. Biomarkers for epithelial-mesenchymal transitions. J Clin Invest. 2009;119:1429–37.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Kokkinos MI, Wafai R, Wong MK, Newgreen DF, Thompson EW, Waltham M. Vimentin and epithelial-mesenchymal transition in human breast cancer—observations in vitro and in vivo. Cells Tissues Organs. 2007;185:191–203.CrossRefPubMedGoogle Scholar
  15. 15.
    Hazelbag S, Kenter GG, Gorter A, Fleuren GJ. Prognostic relevance of TGF-beta1 and PAI-1 in cervical cancer. Int J Cancer. 2004;112:1020–8.CrossRefPubMedGoogle Scholar
  16. 16.
    Lastowska M, Al-Afghani H, Al-Balool HH, Sheth H, Mercer E, Coxhead JM, et al. Identification of a neuronal transcription factor network involved in medulloblastoma development. Acta Neuropathol Commun. 2013;1:35.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Haque I, De A, Majumder M, Mehta S, McGregor D, Banerjee SK, et al. The matricellular protein CCN1/Cyr61 is a critical regulator of sonic hedgehog in pancreatic carcinogenesis. J Biol Chem. 2012;287:38569–79.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Lu JT, Zhao WD, He W, Wei W. Hedgehog signaling pathway mediates invasion and metastasis of hepatocellular carcinoma via ERK pathway. Acta Pharmacol Sin. 2012;33:691–700.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Flemban A, Qualtrough D. The potential role of hedgehog signaling in the luminal/basal phenotype of breast epithelia and in breast cancer invasion and metastasis. Cancers. 2015;7:1863–84.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Thiery JP, Lim CT. Tumor dissemination: an EMT affair. Cancer Cell. 2013;23:272–3.CrossRefPubMedGoogle Scholar
  21. 21.
    Li X, Lin G, Wu B, Zhou X, Zhou K. Overexpression of PTEN induces cell growth arrest and apoptosis in human breast cancer ZR-75-1 cells. Acta Biochim Biophys Sin. 2007;39:745–50.CrossRefPubMedGoogle Scholar
  22. 22.
    Yang L, Kuang LG, Zheng HC, Li JY, Wu DY, Zhang SM, et al. PTEN encoding product: a marker for tumorigenesis and progression of gastric carcinoma. World J Gastroenterol. 2003;9:35–9.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Mulholland DJ, Kobayashi N, Ruscetti M, Zhi A, Tran LM, Huang J, et al. Pten loss and RAS/MAPK activation cooperate to promote EMT and metastasis initiated from prostate cancer stem/progenitor cells. Cancer Res. 2012;72:1878–89.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Bao L, Yan Y, Xu C, Ji W, Shen S, Xu G, et al. MicroRNA-21 suppresses pten and hSulf-1 expression and promotes hepatocellular carcinoma progression through AKT/ERK pathways. Cancer Lett. 2013;337:226–36.CrossRefPubMedGoogle Scholar
  25. 25.
    Tanaka N, Odajima T, Ogi K, Ikeda T, Satoh M. Expression of e-cadherin, alpha-catenin, and beta-catenin in the process of lymph node metastasis in oral squamous cell carcinoma. Br J Cancer. 2003;89:557–63.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002;2:442–54.CrossRefPubMedGoogle Scholar
  27. 27.
    Dahmane N, Lee J, Robins P, Heller P, Ruiz i Altaba A. Activation of the transcription factor Gli1 and the Sonic hedgehog signalling pathway in skin tumours. Nature. 1997;389:876–81.CrossRefPubMedGoogle Scholar
  28. 28.
    Berman DM, Karhadkar SS, Maitra A, Montes De Oca R, Gerstenblith MR, Briggs K, et al. Widespread requirement for hedgehog ligand stimulation in growth of digestive tract tumours. Nature. 2003;425:846–51.CrossRefPubMedGoogle Scholar
  29. 29.
    de Oliveira SD, Loyola AM, Cardoso SV, Chammas R, Liu FT, de Faria PR. Hedgehog signaling pathway mediates tongue tumorigenesis in wild-type mice but not in Gal3-deficient mice. Exp Mol Pathol. 2014;97:332–7.CrossRefGoogle Scholar
  30. 30.
    Metcalfe C, Alicke B, Crow A, Lamoureux M, Dijkgraaf GJ, Peale F, et al. PTEN loss mitigates the response of medulloblastoma to hedgehog pathway inhibition. Cancer Res. 2013;73:7034–42.CrossRefPubMedGoogle Scholar
  31. 31.
    Filbin MG, Dabral SK, Pazyra-Murphy MF, Ramkissoon S, Kung AL, Pak E, et al. Coordinate activation of Shh and PI3K signaling in pten-deficient glioblastoma: new therapeutic opportunities. Nat Med. 2013;19:1518–23.CrossRefPubMedGoogle Scholar
  32. 32.
    Inaguma S, Kasai K, Hashimoto M, Ikeda H. Gli1 modulates EMT in pancreatic cancer—letter. Cancer Res. 2012;72:3702–3. author reply 3704–3705.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Siming Xie
    • 1
  • Zhiyuan Lu
    • 1
  • Yanzhu Lin
    • 1
  • Lijia Shen
    • 1
  • Cao Yin
    • 2
  1. 1.Department of Stomatology, School of MedicineJinan UniversityGuangzhouChina
  2. 2.Department of Oral MedicineGuangdong Provincial Stomatological HospitalGuangzhouChina

Personalised recommendations