Skip to main content

Advertisement

Log in

MicroRNA-17 family as novel biomarkers for cancer diagnosis: a meta-analysis based on 19 articles

  • Original Article
  • Published:
Tumor Biology

Abstract

Cancer remains as the leading cause of death all over the world due to the lack of efficient diagnostic techniques and therapeutic methods. Many studies have reported the potential diagnostic value of microRNA-17 (miRNA-17, miR-17) family members as biomarkers for cancer detection. However, inconsistent results were revealed from a wide range of studies. As a result of this, a meta-analysis based on 19 studies was conducted to assess the diagnostic performance of miR-17 family for cancer detection. A total of 1772 patients with certain types of cancer and 1320 healthy controls were involved in these studies. The overall diagnostic accuracy was measured by the following: sensitivity, 0.67 (95 % confidence interval (CI) 0.60–0.74); specificity, 0.83 (95 % CI 0.74–0.85); positive likelihood ratio (PLR), 3.9 (95 % CI 2.6-5.9); negative likelihood ratio (NLR), 0.40 (95 % CI 0.34–0.48); and diagnostic odds ratio (DOR), 10 (95 % CI 6–16), respectively. Additionally, the pooled area under the summary receiver operator characteristic (SROC) curve (area under the curve (AUC)) was 0.79 (95 % CI 0.75–0.82), indicating a relatively low accuracy of miR-17 family as biomarkers for cancer detection. Subgroup analysis further showed that miR-17 family had more reliable performance in cancer diagnosis for Asian than that for Caucasian. Moreover, multiple miRNAs containing miR-17, -20a/b, and -93 reflected higher diagnostic accuracy than both miR-106a/b (single miRNA) and the overall miR-17 family assay. Therefore, appropriate combinations of miR-17 family may be used as non-invasive screening biomarkers for cancer, and it is necessary to carry out a large-scale population-based study to further assess the potential diagnostic value of miR-17 family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

MiR:

microRNA

PLR:

Positive likelihood ratio

NLR:

Negative likelihood ratio

DOR:

Diagnostic odds ratio

AUC:

Area under the curve

CIs:

Confidence intervals

SEN:

Sensitivity

SPE:

Specificity

References

  1. Fendler A, Jung K. Micrornas as new diagnostic and prognostic biomarkers in urological tumors. Crit Rev Oncog. 2013;18:289–302.

    Article  PubMed  Google Scholar 

  2. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63:11–30.

    Article  PubMed  Google Scholar 

  3. Landis SH, Murray T, Bolden S, Wingo PA. Cancer statistics, 1998. CA: Cancer J Clin. 1998;48:6–29.

    CAS  Google Scholar 

  4. Bartels CL, Tsongalis GJ. Micrornas: novel biomarkers for human cancer. Clin Chem. 2009;55:623–31.

    Article  CAS  PubMed  Google Scholar 

  5. Ha TY. Micrornas in human diseases: from cancer to cardiovascular disease. Immune Network. 2011;11:135–54.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Shen J, Stass SA, Jiang F. Micrornas as potential biomarkers in human solid tumors. Cancer Lett. 2013;329:125–36.

    Article  CAS  PubMed  Google Scholar 

  7. Nohata N, Hanazawa T, Enokida H, Seki N. Microrna-1/133a and microrna-206/133b clusters: dysregulation and functional roles in human cancers. Oncotarget. 2012;3:9–21.

    PubMed  PubMed Central  Google Scholar 

  8. Redova M, Sana J, Slaby O. Circulating miRNAs as new blood-based biomarkers for solid cancers. Future Oncol (London, England). 2013;9:387–402.

    Article  CAS  Google Scholar 

  9. Wittmann J, Jack HM. Serum microRNAs as powerful cancer biomarkers. Biochimica Biophys Acta Rev Cancer. 2010;1806:200–7.

    Article  CAS  Google Scholar 

  10. Zen K, Zhang CY. Circulating microRNAs: a novel class of biomarkers to diagnose and monitor human cancers. Med Res Rev. 2012;32:326–48.

    Article  PubMed  Google Scholar 

  11. Ardizzoni A, Cafferata MA, Tiseo M, Filiberti R, Marroni P, Grossi F, et al. Decline in serum carcinoembryonic antigen and cytokeratin 19 fragment during chemotherapy predicts objective response and survival in patients with advanced nonsmall cell lung cancer. Cancer. 2006;107:2842–9.

    Article  CAS  PubMed  Google Scholar 

  12. Kulpa J, Wojcik E, Reinfuss M, Kolodziejski L. Carcinoembryonic antigen, squamous cell carcinoma antigen, cyfra 21-1, and neuron-specific enolase in squamous cell lung cancer patients. Clin Chem. 2002;48:1931–7.

    CAS  PubMed  Google Scholar 

  13. Allegra A, Alonci A, Campo S, Penna G, Petrungaro A, Gerace D, et al. Circulating micrornas: new biomarkers in diagnosis, prognosis and treatment of cancer (review). Int J Oncol. 2012;41:1897–912.

    CAS  PubMed  Google Scholar 

  14. Fabbri M. Mirnas as molecular biomarkers of cancer. Expert Rev Mol Diagn. 2010;10:435–44.

    Article  CAS  PubMed  Google Scholar 

  15. Weiland M, Gao XH, Zhou L, Mi QS. Small RNAs have a large impact: circulating micrornas as biomarkers for human diseases. RNA Biol. 2012;9:850–9.

    Article  CAS  PubMed  Google Scholar 

  16. Koga Y, Yamazaki N, Yamamoto Y, Yamamoto S, Saito N, Kakugawa Y, et al. Fecal mir-106a is a useful marker for colorectal cancer patients with false-negative results in immunochemical fecal occult blood test. Cancer Epidemiol Biomarkers Prev. 2013;22:1844–52.

    Article  CAS  PubMed  Google Scholar 

  17. Deng ZQ, Qian J, Liu FQ, Lin J, Shao R, Yin JY, et al. Expression level of mir-93 in formalin-fixed paraffin-embedded tissues of breast cancer patients. Genetic Test Mol Biomarkers. 2014;18:366–70.

    Article  CAS  Google Scholar 

  18. Eichelser C, Flesch-Janys D, Chang-Claude J, Pantel K, Schwarzenbach H. Deregulated serum concentrations of circulating cell-free micrornas mir-17, mir-34a, mir-155, and mir-373 in human breast cancer development and progression. Clin Chem. 2013;59:1489–96.

    Article  CAS  PubMed  Google Scholar 

  19. Hu QY, Jiang H, Su J, Jia YQ. Micrornas as biomarkers for hepatocellular carcinoma: a diagnostic meta-analysis. Clin Lab. 2013;59:1113–20.

    Article  PubMed  Google Scholar 

  20. Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, et al. Quadas-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med. 2011;155:529–36.

    Article  PubMed  Google Scholar 

  21. Zhang Y, Zhong Q, Chen X, Fang J, Huang Z. Diagnostic value of microRNAs in discriminating malignant thyroid nodules from benign ones on fine-needle aspiration samples. Tumour Biol: J Int Soc Oncodevelopmental Biol Med 2014.

  22. Wan C, Shen Y, Yang T, Wang T, Chen L, Wen F. Diagnostic value of microrna for pancreatic cancer: a meta-analysis. Arch Med Sci: AMS. 2012;8:749–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Deeks JJ, Macaskill P, Irwig L. The performance of tests of publication bias and other sample size effects in systematic reviews of diagnostic test accuracy was assessed. J Clin Epidemiol. 2005;58:882–93.

    Article  PubMed  Google Scholar 

  24. Wang HY, Shen J, Jiang CP, Liu BR. How to explain the contradiction of microrna 200c expression and survival in solid tumors? A meta-analysis. Asian Pac J Cancer Prev: APJCP. 2014;15:3687–90.

    Article  PubMed  Google Scholar 

  25. Vamvakas EC. Meta-analyses of studies of the diagnostic accuracy of laboratory tests: a review of the concepts and methods. Arch Pathol Lab Med. 1998;122:675–86.

    CAS  PubMed  Google Scholar 

  26. Lijmer JG, Bossuyt PM, Heisterkamp SH. Exploring sources of heterogeneity in systematic reviews of diagnostic tests. Stat Med. 2002;21:1525–37.

    Article  PubMed  Google Scholar 

  27. Gao Y, Zhao H, Lu Y, Li H, Yan G. Micrornas as potential diagnostic biomarkers in renal cell carcinoma. Tumour Biol: J Int Soc Oncodevelopmental Biol Med. 2014.

  28. Jackson D, White IR, Thompson SG. Extending dersimonian and laird’s methodology to perform multivariate random effects meta-analyses. Stat Med. 2010;29:1282–97.

    Article  PubMed  Google Scholar 

  29. Guo Z, Zhao C, Wang Z. MicroRNAs as ideal biomarkers for the diagnosis of lung cancer. Tumour Biol: J Int Soc Oncodevelopmental Biol Med. 2014.

  30. Ng EK, Chong WW, Jin H, Lam EK, Shin VY, Yu J, et al. Differential expression of micrornas in plasma of patients with colorectal cancer: a potential marker for colorectal cancer screening. Gut. 2009;58:1375–81.

    Article  CAS  PubMed  Google Scholar 

  31. Tsujiura M, Ichikawa D, Komatsu S, Shiozaki A, Takeshita H, Kosuga T, et al. Circulating micrornas in plasma of patients with gastric cancers. Br J Cancer. 2010;102:1174–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhou H, Guo JM, Lou YR, Zhang XJ, Zhong FD, Jiang Z, et al. Detection of circulating tumor cells in peripheral blood from patients with gastric cancer using microRNA as a marker. J Mol Med (Berlin, Germany). 2010;88:709–17.

    Article  CAS  Google Scholar 

  33. Baraniskin A, Kuhnhenn J, Schlegel U, Chan A, Deckert M, Gold R, et al. Identification of micrornas in the cerebrospinal fluid as marker for primary diffuse large b-cell lymphoma of the central nervous system. Blood. 2011;117:3140–6.

    Article  CAS  PubMed  Google Scholar 

  34. Ryu JK, Matthaei H, Dal Molin M, Hong SM, Canto MI, Schulick RD, et al. Elevated microrna mir-21 levels in pancreatic cyst fluid are predictive of mucinous precursor lesions of ductal adenocarcinoma. Pancreatology: Off J Int Assoc Pancreatol (IAP). 2011;11:343–50.

    Article  CAS  Google Scholar 

  35. Kuriyama S, Hamaya Y, Yamada T, Sugimoto M, Osawa S, Sugimoto K, et al. Fecal microrna assays as a marker for colorectal cancer screening. Gastroenterology. 2012;142:S770.

    Article  Google Scholar 

  36. Schwarzenbach H, Milde-Langosch K, Steinbach B, Muller V, Pantel K. Diagnostic potential of pten-targeting mir-214 in the blood of breast cancer patients. Breast Cancer Res Treat. 2012;134:933–41.

    Article  CAS  PubMed  Google Scholar 

  37. Cai H, Yuan Y, Hao YF, Guo TK, Wei X, Zhang YM. Plasma micrornas serve as novel potential biomarkers for early detection of gastric cancer. Med Oncol (Northwood, London, England). 2013;30:452.

    Article  Google Scholar 

  38. Cui L, Zhang X, Ye G, Zheng T, Song H, Deng H, et al. Gastric juice micrornas as potential biomarkers for the screening of gastric cancer. Cancer. 2013;119:1618–26.

    Article  CAS  PubMed  Google Scholar 

  39. Luo X, Stock C, Burwinkel B, Brenner H. Identification and evaluation of plasma micrornas for early detection of colorectal cancer. PLoS One. 2013;8:e62880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shiotani A, Murao T, Kimura Y, Matsumoto H, Kamada T, Kusunoki H, et al. Identification of serum mirnas as novel non-invasive biomarkers for detection of high risk for early gastric cancer. Br J Cancer. 2013;109:2323–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhao S, Yao D, Chen J, Ding N. Circulating miRNA-20a and miRNA-203 for screening lymph node metastasis in early stage cervical cancer. Genet Test Molecular biomarkers. 2013;17:631–6.

    Article  CAS  Google Scholar 

  42. Zhi F, Cao X, Xie X, Wang B, Dong W, Gu W, et al. Identification of circulating microRNAs as potential biomarkers for detecting acute myeloid leukemia. PLoS One. 2013;8:e56718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang W, Li T, Li CW. The analysis of mir-17- 5p expression in urine for bladder cancer diagnosis. Med J Air Force. 2013;29:143-5+54.

    Google Scholar 

  44. Pan W, Tang W, Yuan W, Yu Q, Zuo W, Xu C, et al. Expression and clinical significance of plasma small rna in patients with pancreatic cancer. Zhonghua zhong liu za zhi Chinese journal of oncology. 2014;36:351–4.

    CAS  PubMed  Google Scholar 

  45. Zhang L, Meng L, Fan Z, Liu B, Pei Y, Zhao Z. Expression of plasma mir-106a in colorectal cancer and its clinical significance. Nan fang yi ke da xue xue bao = Journal of Southern Medical University. 2014;34:354–7.

    PubMed  Google Scholar 

  46. Stengel D, Bauwens K, Sehouli J, Ekkernkamp A, Porzsolt F. A likelihood ratio approach to meta-analysis of diagnostic studies. J Med Screen. 2003;10:47–51.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhonggui Huang.

Ethics declarations

Conflicts of interest

None

Additional information

Ronghe Gu and Shiqing Huang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, R., Huang, S., Huang, W. et al. MicroRNA-17 family as novel biomarkers for cancer diagnosis: a meta-analysis based on 19 articles. Tumor Biol. 37, 6403–6411 (2016). https://doi.org/10.1007/s13277-015-4484-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-4484-x

Keywords

Navigation