Tumor Biology

, Volume 37, Issue 5, pp 6661–6671 | Cite as

Nutrient deprivation-related OXPHOS/glycolysis interconversion via HIF-1α/C-MYC pathway in U251 cells

  • Zhongjian Liu
  • Yang Sun
  • Shirui Tan
  • Liang Liu
  • Suqiong Hu
  • Hongyu Huo
  • Meizhang Li
  • Qinghua Cui
  • Min Yu
Original Article

Abstract

Although the Warburg effect is a dominant metabolic phenotype observed in cancers, the metabolic changes and adaptation occurring in tumors have been demonstrated to extend beyond the Warburg effect and thus considered a secondary effect to the transformation process of carcinogenesis, including nutritional deficiencies. However, the role of nutritional deficiencies in this metabolic reprogramming (e. g., oxidative phosphorylation (OXPHOS)/glycolysis interconversion) is not completely known yet. Here, we showed that under regular culture condition, the proliferation of U251 cells, but not other tumor cell lines, preferentially performed the Warburg effect and was remarkably inhibited by oxamic acid which can inhibit the activity of lactate dehydrogenase (LDH); whereas under serum starvation, glycolysis was depressed, tricarboxylic acid cycle (TCA) was enhanced, and the activity of OXPHOS was reinforced to maintain cellular ATP content in a high level, but interestingly, we observed a decreased expression of reactive oxygen species (ROS). Moreover, the upregulated activity of mitochondrial complex I was confirmed by Western blots and showed that the mitochondrial-related protein, NDUFA9, NDUFB8, ND1, and VDAC1 were remarkably increased after serum starved. Mechanistically, nutritional deficiencies could reduce hypoxia-inducible factor α (HIF-1α) protein expression to increase C-MYC protein level, which in turn increased nuclear respiratory factor 1 (NRF1) and mitochondrial transcription factor A (TFAM) transcription to enhance the activity of OXPHOS, suggesting that metabolic reprogramming by the changes of microenvironment during the carcinogenesis can provide some novel therapeutic clues to traditional cancer treatments.

Keywords

Starvation OXPHOS Glycolysis HIF-1α C-MYC 

Notes

Acknowledgments

We would like to thank all the members of our laboratory for the encouragement and help in this study. This work was financially supported by the National Natural Science Foundation of China (no. 31260276, no. 31160237, and no. 81271330), the talent program of Yunnan Province (no. W8110305), and the Yunnan Province Science and Technology Innovation Team (no. 2011CI123)

Authors’ contributions

ZJL, YS, and MY designed the experiments with valuable help from QHC, MZL, HUH and ZJL performed and analyzed data with valuable help from ST and LL, and ZJL wrote the manuscript. ZJL and MY oversaw the overall project.

Compliance with ethical standards

Conflicts of interest

None

References

  1. 1.
    Moreno-Sanchez R, Marin-Hernandez A, Saavedra E, Pardo JP, Ralph SJ, Rodriguez-Enriquez S. Who controls the ATP supply in cancer cells? Biochemistry lessons to understand cancer energy metabolism. Int J Biochem Cell Biol. 2014;50:10–23. doi: 10.1016/j.biocel.2014.01.025.CrossRefPubMedGoogle Scholar
  2. 2.
    Bustamante E, Morris HP, Pedersen PL. Energy metabolism of tumor cells. Requirement for a form of hexokinase with a propensity for mitochondrial binding. J Biol Chem. 1981;256(16):8699–704.PubMedGoogle Scholar
  3. 3.
    Diaz-Ruiz R, Uribe-Carvajal S, Devin A, Rigoulet M. Tumor cell energy metabolism and its common features with yeast metabolism. Biochim Biophys Acta. 2009;1796(2):252–65. doi: 10.1016/j.bbcan.2009.07.003.PubMedGoogle Scholar
  4. 4.
    Warburg O. On the origin of cancer cells. Science. 1956;123(3191):309–14.CrossRefPubMedGoogle Scholar
  5. 5.
    Nakajima EC, Van Houten B. Metabolic symbiosis in cancer: refocusing the Warburg lens. Mol Carcinog. 2013;52(5):329–37. doi: 10.1002/mc.21863.CrossRefPubMedGoogle Scholar
  6. 6.
    Solaini G, Sgarbi G, Baracca A. Oxidative phosphorylation in cancer cells. Biochim Biophys Acta. 2011;1807(6):534–42. doi: 10.1016/j.bbabio.2010.09.003.CrossRefPubMedGoogle Scholar
  7. 7.
    Bonuccelli G, Tsirigos A, Whitaker-Menezes D, Pavlides S, Pestell RG, Chiavarina B, et al. Ketones and lactate “fuel” tumor growth and metastasis: evidence that epithelial cancer cells use oxidative mitochondrial metabolism. Cell Cycle. 2010;9(17):3506–14.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Bashan N, Burdett E, Hundal HS, Klip A. Regulation of glucose transport and GLUT1 glucose transporter expression by O2 in muscle cells in culture. Am J Physiol. 1992;262(3 Pt 1):C682–90.PubMedGoogle Scholar
  9. 9.
    Johnson MA, Vidoni S, Durigon R, Pearce SF, Rorbach J, He J, et al. Amino acid starvation has opposite effects on mitochondrial and cytosolic protein synthesis. PLoS One. 2014;9(4):e93597. doi: 10.1371/journal.pone.0093597.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Xie J, Wu H, Dai C, Pan Q, Ding Z, Hu D, et al. Beyond Warburg effect—dual metabolic nature of cancer cells. Sci Rep. 2014;4:4927. doi: 10.1038/srep04927.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Chen M, Huang J, Yang X, Liu B, Zhang W, Huang L, et al. Serum starvation induced cell cycle synchronization facilitates human somatic cells reprogramming. PLoS One. 2012;7(4):e28203. doi: 10.1371/journal.pone.0028203.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Cooper S. Reappraisal of serum starvation, the restriction point, G0, and G1 phase arrest points. FASEB J. 2003;17(3):333–40. doi: 10.1096/fj.02-0352rev.CrossRefPubMedGoogle Scholar
  13. 13.
    Signorile A, Micelli L, De Rasmo D, Santeramo A, Papa F, Ficarella R, et al. Regulation of the biogenesis of OXPHOS complexes in cell transition from replicating to quiescent state: involvement of PKA and effect of hydroxytyrosol. Biochim Biophys Acta. 2014;1843(4):675–84. doi: 10.1016/j.bbamcr.2013.12.017.CrossRefPubMedGoogle Scholar
  14. 14.
    Kanai M, Iba S, Okada R, Tashiro E, Imoto M. Oligomycin induced the proteasomal degradation of cyclin D1 protein. J Antibiot (Tokyo). 2009;62(8):425–9. doi: 10.1038/ja.2009.47.CrossRefGoogle Scholar
  15. 15.
    Rodriguez-Paez L, Chena-Taboada MA, Cabrera-Hernandez A, Cordero-Martinez J, Wong C. Oxamic acid analogues as LDH-C4-specific competitive inhibitors. J Enzyme Inhib Med Chem. 2011;26(4):579–86. doi: 10.3109/14756366.2011.566221.CrossRefPubMedGoogle Scholar
  16. 16.
    Sweet S, Singh G. Accumulation of human promyelocytic leukemic (HL-60) cells at two energetic cell cycle checkpoints. Cancer Res. 1995;55(22):5164–7.PubMedGoogle Scholar
  17. 17.
    Kurbacher CM, Cree IA. Chemosensitivity testing using microplate adenosine triphosphate-based luminescence measurements. Methods Mol Med. 2005;110:101–20. doi: 10.1385/1-59259-869-2:101.PubMedGoogle Scholar
  18. 18.
    Vives-Bauza C, Yang L, Manfredi G. Assay of mitochondrial ATP synthesis in animal cells and tissues. Methods Cell Biol. 2007;80:155–71. doi: 10.1016/s0091-679x(06)80007-5.CrossRefPubMedGoogle Scholar
  19. 19.
    Yu M, Dai J, Huang W, Jiao Y, Liu L, Wu M, et al. hMTERF4 knockdown in HeLa cells results in sub-G1 cell accumulation and cell death. Acta Biochim Biophys Sin (Shanghai). 2011;43(5):372–9. doi: 10.1093/abbs/gmr020.CrossRefGoogle Scholar
  20. 20.
    Zhang E, Li X, Zhang S, Chen L, Zheng X. Cell cycle synchronization of embryonic stem cells: effect of serum deprivation on the differentiation of embryonic bodies in vitro. Biochem Biophys Res Commun. 2005;333(4):1171–7. doi: 10.1016/j.bbrc.2005.05.200.CrossRefPubMedGoogle Scholar
  21. 21.
    Hsiao YP, Lai WW, Wu SB, Tsai CH, Tang SC, Chung JG, et al. Triggering apoptotic death of human epidermal keratinocytes by malic acid: involvement of endoplasmic reticulum stress- and mitochondria-dependent signaling pathways. Toxins (Basel). 2015;7(1):81–96. doi: 10.3390/toxins7010081.CrossRefGoogle Scholar
  22. 22.
    Nazmara Z, Salehnia M, HosseinKhani S. Mitochondrial distribution and ATP content of vitrified, in vitro matured mouse oocytes. Avicenna J Med Biotechnol. 2014;6(4):210–7.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Xiong W, Huang W, Jiao Y, Ma J, Yu M, Ma M, et al. Production, purification and characterization of mouse monoclonal antibodies against human mitochondrial transcription termination factor 2 (MTERF2). Protein Expr Purif. 2012;82(1):11–9. doi: 10.1016/j.pep.2011.10.012.CrossRefPubMedGoogle Scholar
  24. 24.
    Ratcliffe PJ. From erythropoietin to oxygen: hypoxia-inducible factor hydroxylases and the hypoxia signal pathway. Blood Purif. 2002;20(5):445–50.CrossRefPubMedGoogle Scholar
  25. 25.
    Semenza GL, Rue EA, Iyer NV, Pang MG, Kearns WG. Assignment of the hypoxia-inducible factor 1alpha gene to a region of conserved synteny on mouse chromosome 12 and human chromosome 14q. Genomics. 1996;34(3):437–9. doi: 10.1006/geno.1996.0311.CrossRefPubMedGoogle Scholar
  26. 26.
    He M, Wang QY, Yin QQ, Tang J, Lu Y, Zhou CX, et al. HIF-1alpha downregulates miR-17/20a directly targeting p21 and STAT3: a role in myeloid leukemic cell differentiation. Cell Death Differ. 2013;20(3):408–18. doi: 10.1038/cdd.2012.130.CrossRefPubMedGoogle Scholar
  27. 27.
    Zhang H, Gao P, Fukuda R, Kumar G, Krishnamachary B, Zeller KI, et al. HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity. Cancer Cell. 2007;11(5):407–20. doi: 10.1016/j.ccr.2007.04.001.CrossRefPubMedGoogle Scholar
  28. 28.
    Kim J, Lee JH, Iyer VR. Global identification of Myc target genes reveals its direct role in mitochondrial biogenesis and its E-box usage in vivo. PLoS One. 2008;3(3):e1798. doi: 10.1371/journal.pone.0001798.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Li F, Wang Y, Zeller KI, Potter JJ, Wonsey DR, O’Donnell KA, et al. Myc stimulates nuclearly encoded mitochondrial genes and mitochondrial biogenesis. Mol Cell Biol. 2005;25(14):6225–34. doi: 10.1128/mcb.25.14.6225-6234.2005.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Yu J, Wang Q, Chen N, Sun Y, Wang X, Wu L, et al. Mitochondrial transcription factor A regulated ionizing radiation-induced mitochondrial biogenesis in human lung adenocarcinoma A549 cells. J Radiat Res. 2013;54(6):998–1004. doi: 10.1093/jrr/rrt046.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 2008;7(1):11–20. doi: 10.1016/j.cmet.2007.10.002.CrossRefPubMedGoogle Scholar
  32. 32.
    Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324(5930):1029–33. doi: 10.1126/science.1160809.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74. doi: 10.1016/j.cell.2011.02.013.CrossRefPubMedGoogle Scholar
  34. 34.
    Chen G, Dai J, Tan S, Meng S, Liu Z, Li M, et al. MTERF1 regulates the oxidative phosphorylation activity and cell proliferation in HeLa cells. Acta Biochim Biophys Sin (Shanghai). 2014;46(6):512–21. doi: 10.1093/abbs/gmu029.CrossRefGoogle Scholar
  35. 35.
    Wu H, Ding Z, Hu D, Sun F, Dai C, Xie J, et al. Central role of lactic acidosis in cancer cell resistance to glucose deprivation-induced cell death. J Pathol. 2012;227(2):189–99. doi: 10.1002/path.3978.CrossRefPubMedGoogle Scholar
  36. 36.
    Kianercy A, Veltri R, Pienta KJ. Critical transitions in a game theoretic model of tumour metabolism. Interface Focus. 2014;4(4):20140014. doi: 10.1098/rsfs.2014.0014.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Kennedy KM, Dewhirst MW. Tumor metabolism of lactate: the influence and therapeutic potential for MCT and CD147 regulation. Future Oncol. 2010;6(1):127–48. doi: 10.2217/fon.09.145.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Zhongjian Liu
    • 1
    • 2
    • 3
  • Yang Sun
    • 1
    • 2
  • Shirui Tan
    • 1
    • 2
  • Liang Liu
    • 1
    • 2
  • Suqiong Hu
    • 1
    • 2
  • Hongyu Huo
    • 1
    • 2
  • Meizhang Li
    • 1
    • 2
  • Qinghua Cui
    • 1
    • 2
  • Min Yu
    • 1
    • 2
  1. 1.Laboratory of Biochemistry and Molecular Biology, School of Life SciencesYunnan UniversityKunmingChina
  2. 2.Key Laboratory for Molecular Biology of High Education in Yunnan Province, School of Life SciencesYunnan UniversityKunmingChina
  3. 3.Department of Biochemistry and Molecular Biology, West China School of Preclinical and Forensic MedicineSichuan UniversityChengduChina

Personalised recommendations