Tumor Biology

, Volume 37, Issue 5, pp 6285–6295 | Cite as

The potential effect of patulin on mice bearing melanoma cells: an anti-tumour or carcinogenic effect?

  • Manel Boussabbeh
  • Intidhar Ben Salem
  • Karima Rjiba-Touati
  • Chedy Bouyahya
  • Fadwa Neffati
  • Mohamed Fadhel Najjar
  • Hassen Bacha
  • Salwa Abid-Essefi
Original Article

Abstract

Mycotoxins are bioactive compounds that are noxious to human. Their effects on oncogenesis have been satisfactorily elucidated, and some of mycotoxins have been classified as carcinogenic to humans. Nevertheless, patulin (PAT) is considered by the International Agency of Research on Cancer as ‘not carcinogenic to humans’. The present study was designed to understand the effect of this mycotoxin on melanoma cells (B16F10) by measuring cell proliferation and assessing the anti-tumour effect in vivo in Balb/c mice. Our results revealed that intraperitoneally administration of PAT for 20 days significantly induces tumour regression in B16F10 cell-implanted mice. This effect was evidenced by the activation of apoptosis which is supported by the increase in p53 and Bax expressions, the downregulation of the protein levels of Bcl2, and the increase in caspase-3 activity. Moreover, systemic toxicity analysis demonstrated that there is no potential toxicity following PAT treatment unlike untreated melanoma mice which suffer from anaemia, inflammation and liver dysfunction. Remarkably, this is the first published report demonstrating the therapeutic efficacy of PAT in vivo models.

Keywords

Mycotoxin Anti-tumour Melanoma Apoptosis Patulin B16F10 

Abbreviations

PAT

Patulin

RBC

Red blood cells

HGB

Haemoglobin

HCT

Hematocrit

PLT

Platelets

MCHC

Mean corpuscular haemoglobin concentration

MCH

Mean corpuscular haemoglobin

MCV

Mean corpuscular volume

MPV

Mean platelet volume

WBC

White blood cells

AST

Aspartate transaminase

ALT

Alanine aminotransferase

GGT

Gamma glutamyltransférase

T-Bil

Total bilirubin T

TGL

Triglycerides

T-CHOL

Total cholesterol

ALP

Alkaline phosphatase

CREA

Creatinin

AU

Ammonuria

LDH

Lactate dehydrogenase

Notes

Acknowledgments

This research was supported by the Ministère Tunisien de l’Enseignement Superieur et de la Recherche Scientifique et de la Technologie (Laboratoire de Recherche sur les Substances Biologiquement Compatibles, LRSBC). The authors are thankful to Mr. Mohamed Fadhel Najjar for its laboratory support during the course of study.

References

  1. 1.
    Zagrouba E, Barhoumi W. A prelimary approach for the automated recognition of malignant melanoma. Image Anal Stereol. 2004;23:121–35.CrossRefGoogle Scholar
  2. 2.
    Gray-Schopfer V, Wellbrock C, Marais R. Review Article Melanoma biology and new targeted therapy. Nature. 2007;445:851–7.CrossRefPubMedGoogle Scholar
  3. 3.
    Erdei E, Torres MS. A new understanding in the epidemiology of melanoma. Expert Rev Anticancer Ther. 2010;10(11):1811–23.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Hariz W, Chabéne H, Masmoudi A, Miziou TJ, Mseddi M, Turki H. Changement du profil épidémiologique du mélanome cutané en Tunisie au cours des deux dernières décennies. Annales de Dermatologie et de Vénéréologie Volume 139, n° 12S. doi: 10.1016/j.annder.2012.10.494.
  5. 5.
    Amiri KI, Horton LW, LaFleur BJ, Sosman JA, Richmond A. Augmenting chemosensitivity of malignant melanoma tumors via proteasome inhibition: implication for bortezomib (VELCADE, PS-341) as a therapeutic agent for malignant melanoma. Cancer Res. 2004;64:4912–8.CrossRefPubMedGoogle Scholar
  6. 6.
    Gogas HJ, Kirkwood JM, Sondak VK. Chemotherapy for metastatic melanoma. Am Cancer Soc. 2007;109:455–64.Google Scholar
  7. 7.
    Wong RSY. Apoptosis in cancer: from pathogenesis to treatment. J Exp Clin Cancer Res. 2011;30:87.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Gallerne C, Prola A, Lemaire C. Hsp90 inhibition by PU-H71 induces apoptosis through endoplasmic reticulum stress and mitochondrial pathway in cancer cells and overcomes the resistance conferred by Bcl-2. Biochim Biophys Acta. 1833;2013:1356–66.Google Scholar
  9. 9.
    Saxena N, Ansari KM, Kumar R, Dhawan A, Dwivedi PD, Das M. Patulin causes DNA damage leading to cell cycle arrest and apoptosis through modulation of Bax, p53 and p21/WAF1 proteins in skin of mice. Toxicol Appl Pharmacol. 2009;234:192–201.CrossRefPubMedGoogle Scholar
  10. 10.
    Zhou S, Jiang L, Geng C, Cao J, Zhong L. Patulininduced oxidative DNA damage and p53 modulation in HepG2 cells. Toxicon. 2010;55:390–5.CrossRefPubMedGoogle Scholar
  11. 11.
    De Melo FT, De Oliveira IM, Greggio S, Dacosta JC, Guecheva TN, Saffi J, et al. DNA damage in organs of mice treated acutely with patulin, a known mycotoxin. Food Chem Toxicol. 2012;10:3548–55.CrossRefGoogle Scholar
  12. 12.
    Kwon O, Soung NK, Thimmegowda NR, Jeong SJ, Jang JH, Moon DO, et al. Patulin induces colorectal cancer cells apoptosis through EGR-1 dependent ATF3 up-regulation. Cell Signal. 2012;24:943–50.CrossRefPubMedGoogle Scholar
  13. 13.
    Ayed-Boussema I, Abassi H, Bouaziz C, Ben Hlima W, Ayed Y, Bacha H. Antioxidative and antigenotoxic effect of vitamin E against patulin cytotoxicity and genotoxicity in HepG2 cells. Environ Toxicol. 2013;28:299–306.CrossRefPubMedGoogle Scholar
  14. 14.
    Boussabbeh M, Ben Salem I, Prola A, Guilbert A, Bacha H, Abid-Essefi S, Lemaire C. Patulin induces apoptosis through ROS-mediated endoplasmic reticulum stress pathway. Toxicological Sciences. 2015;1–10. doi: 10.1093/toxsci/kfu319.
  15. 15.
    Ciegler A, Becwith AC, Jackson LK. Teratogenicity of patulin and patulin adducts formed with cysteine. Appl Environ Microbiol. 1976;31:664–7.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Osswald H, Frank HK, Komitowski D, Winter H. Long term testing of patulin administer orally to Sprague–Dawley rats and Swiss mice. Food Cosmet Toxicol. 1978;16:243–7.CrossRefPubMedGoogle Scholar
  17. 17.
    International Agency for Research on Cancer (IARC), WHO. Some naturally occurring and synthetic food components, furocoumarins and ultraviolet radiation. 1998.Google Scholar
  18. 18.
    Sarray S, Delamarre E, Marvaldi J, El Ayeb M, Marrakchi N, Luis J. Lebectin and lebecetin, two C-type lectins from snake venom, inhibit α5β1 and αv-containing integrins. Matrix Biol. 2007;26:306–13.CrossRefPubMedGoogle Scholar
  19. 19.
    Rjiba-Touati K, Ayed-Boussema I, Belarbia A, Azzebi A, Achour A, Bacha H. Protective effect of recombinant human erythropoeitin against cisplatin cytotoxicity and genotoxicity in cultured Vero cells. Exp Toxicol Pathol. 2013;65(1–2):181–7.CrossRefPubMedGoogle Scholar
  20. 20.
    Collins AR, Dusinska M, Gedik CM, Stetina R. Oxidative damage to DNA: do we have a reliable biomarker? Environ Health Perspect. 1996;104:465–9.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Alves I, Oliveira NG, Laires A, Rodrigues AS, Rueff J. Induction of micronuclei and chromosomal aberrations by themycotoxin patulin in mammalian cells: role of ascorbic acid as a modulator of patulin clastogenicity. Mutagenesis. 2000;15:229–34.CrossRefPubMedGoogle Scholar
  22. 22.
    Pfeiffer E, Gross K, Metzler M. Aneuploidogenic and clastogenic potential of the mycotoxins citrinin and patulin. Carcinogenesis. 1998;19:1313–8.CrossRefPubMedGoogle Scholar
  23. 23.
    Imaida K, Hirose M, Ogiso T, Kurata Y, Ito N. Quantitative analysis of initiating and promoting activities of five mycotoxins in liver carcinogenesis in rats. Cancer Lett. 1982;16:137–43.CrossRefPubMedGoogle Scholar
  24. 24.
    Saxena N, Ansari KM, Kumar R, Chaudhari BP, Dwivedi PD, Das M. Role of mitogen activated protein kinases in skin tumorigenicity of patulin. Toxicol Appl Pharmacol. 2011;257:264–71.CrossRefPubMedGoogle Scholar
  25. 25.
    Guo X, Dong Y, Yin S, Zhao C, Huo Y, Fan L, et al. Patulin induces pro-survival functions via autophagy inhibition and p62 accumulation. Cell Death Dis. 2013;4:e822. doi: 10.1038/cddis.2013.349.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Yoshida H. ER stress and diseases. FEBS J. 2007;274:630–58.CrossRefPubMedGoogle Scholar
  27. 27.
    Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol. 2007;8:519–29.CrossRefPubMedGoogle Scholar
  28. 28.
    Hetz C. The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol. 2012;13:89–102.PubMedGoogle Scholar
  29. 29.
    Korsmeyer SJ, Shutter JR, Veis DJ, Merry DE, Oltvai ZN. Bcl-2/Bax: a rheostat that regulates an anti-oxidant pathway and cell death. Semin Cancer Biol. 1993;4:327–32.PubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Manel Boussabbeh
    • 1
    • 2
  • Intidhar Ben Salem
    • 1
    • 2
  • Karima Rjiba-Touati
    • 1
    • 4
  • Chedy Bouyahya
    • 1
  • Fadwa Neffati
    • 3
  • Mohamed Fadhel Najjar
    • 3
  • Hassen Bacha
    • 1
  • Salwa Abid-Essefi
    • 1
  1. 1.Laboratory for Research on Biologically Compatible Compounds, Faculty of Dental MedicineMonastirTunisia
  2. 2.Faculty of Sciences of BizerteUniversity of CarthageTunisTunisia
  3. 3.Laboratory of Biochemistry-ToxicologyMonastir University HospitalMonastirTunisia
  4. 4.Faculty of Sciences of GafsaGafsaTunisia

Personalised recommendations