Skip to main content
Log in

A panel of autoantibodies as potential early diagnostic serum biomarkers in patients with cervical cancer

  • Original Article
  • Published:
Tumor Biology

Abstract

The study was designed to test whether circulating autoantibodies against associated antigens (TAAs) were altered in early cervical cancer and benign cervical tumors. A total of 111 cervical cancer patients, 137 cervical benign tumor patients, and 160 healthy volunteers matched in age were recruited in this study. The expression of autoantibodies was tested using in-house developed enzyme-linked immunosorbent assay (ELISA) with linear peptide envelope antigens derived from TAAs. One-way ANOVA test showed that there was no difference in the CD25 autoantibody expression among the cervical cancer group, benign tumor group, and healthy control group (P = 0.063; P = 0.191). The expression of autoantibodies against survivin and TP53 in the cervical cancer group was significantly higher than that in the benign tumor group (P < 0.001; P < 0.001). The levels of autoantibodies against cyclinB-1 and ANXA-1 were higher in the cervical cancer group than in the healthy control group (P = 0.010; P = 0.001), while autoantibodies in the cervical cancer group showed no difference in expression compared with that in the benign tumor group. The panel of five TAAs showed a sensitivity of 37.8 % and a specificity of 90 %, which was much higher than the sensitivity of the single-TAA testing group. The data from this study further support our previous hypothesis that the detection of autoantibodies for the diagnosis of a specific cancer type can be enhanced using a panel of several selected TAAs as target antigens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55:74–108.

    Article  PubMed  Google Scholar 

  2. Tan EM, Zhang J. Autoantibodies to tumor-associated antigens: reporters from the immune system. Immunol Rev. 2008;222:328–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zaenker P, Ziman MR. Serologic autoantibodies as diagnostic cancer biomarkers—a review. Cancer Epidemiol Biomarkers Prev. 2013;22:2161–81.

    Article  CAS  PubMed  Google Scholar 

  4. Wu SF, Zhang JW, Qian WY, Yang YB, Liu Y, Dong Y, et al. Altered expression of survivin, Fas and FasL contributed to cervical cancer development and metastasis. Eur Rev Med Pharmacol Sci. 2012;16:2044–50.

    PubMed  Google Scholar 

  5. Barrett KL, Demiranda D, Katula KS. CycinB1 promoter activity and functional in G1 phase of human breast cancer cells. J Cell Biol Int. 2002;26:19–28.

    Article  CAS  Google Scholar 

  6. Prystowsky M, Feeney K, Kawachi N, Montagna C, Willmott M, Wasson C, et al. Inhibition of Plk1 and Cyclin B1 expression results in panobinostat-induced G2 delay and mitotic defects. Sci Rep. 2013;3:2640. doi:10.1038/srep02640.

    Article  PubMed  PubMed Central  Google Scholar 

  7. de Graauw M, van Miltenburg MH, Schmidt MK, Pont C, Lalai R, Kartopawiro J, et al. Annexin A1 regulates TGF-beta signaling and promotes metastasis formation of basal-like breast cancer cells. Proc Natl Acad Sci U S A. 2010;107(14):6340–5.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Yu G, Wang J, Chen Y, Wang X, Pan J, Li Q, et al. Tissue microarray analysis reveals strong clinical evidence for a close association between loss of annexin A1 expression and nodal metastasis in gastric cancer. Clin Exp Metastasis. 2008;25:695–702.

    Article  CAS  PubMed  Google Scholar 

  9. Cao Y, Li Y, Edelweiss M, Arun B, Rosen D, Resetkova E, et al. Loss of annexin A1 expression in breast cancer progression. Appl Immunohistochem Mol Morphol. 2008;16:530–4.

    Article  CAS  PubMed  Google Scholar 

  10. Protrka Z, Arsenijevic S, Dimitrijevic A, Mitrovic S, Stankovic V, Milosavljevic M, et al. Co-overexpression of bcl-2 and c-myc in uterine cervix carcinomas and premalignant lesions. Eur J Histochem. 2011;55(1):44–9.

    Article  Google Scholar 

  11. Samir R, Asplund A, Tot T, Pekar G, Hellberg D. High-risk HPV infection and CIN grade correlates to the expression of c-myc, CD4+, FHIT, E-cadherin, Ki-67, and p16INK4a. J Low Genit Tract Dis. 2011;15:280–6.

    Article  PubMed  Google Scholar 

  12. Tornesello ML, Buonaguro L, Buonaguro FM. Mutations of the TP53 gene in adenocarcinoma and squamous cell carcinoma of the cervix: a systematic review. Gynecol Oncol. 2013;128:442–8.

    Article  CAS  PubMed  Google Scholar 

  13. Chen ZF, Xu Q, Ding JB, Zhang Y, Du R, Ding Y. CD4+CD25+Foxp3+ Treg and TGF-beta play important roles in pathogenesis of Uygur cervical carcinoma. Eur J Gynaecol Oncol. 2012;33:502–7.

    CAS  PubMed  Google Scholar 

  14. Liu L, Liu N, Liu B, Yang Y, Zhang Q, Zhang W, et al. Are circulating autoantibodies to ABCC3 transporter a potential biomarker for lung cancer? J Cancer Res Clin Oncol. 2012;138:1737–42.

    Article  CAS  PubMed  Google Scholar 

  15. Cheng Y, Xu J, Guo J, Jin Y, Wang X, Zhang Q, et al. Circulating autoantibody to ABCC3 may be a potential biomarker for esophageal squamous cell carcinoma. Clin Transl Oncol. 2013;15:398–402.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang C, Ye L, Guan S, Jin S, Wang W, Sun S, et al. Autoantibodies against p16 protein-derived peptides may be a potential biomarker for non-small cell lung cancer. Tumour Biol. 2014;35:2047–51.

    Article  CAS  PubMed  Google Scholar 

  17. Jin Y, Guan S, Liu L, Sun S, Lee KH, Wei J. Anti-p16 autoantibodies may be a useful biomarker for early diagnosis of esophageal cancer. Asia Pac J Clin Oncol. 2014. doi:10.1111/ajco.12198.

    PubMed  Google Scholar 

  18. Wang W, Guan S, Sun S, Jin Y, Lee KH, Chen Y, et al. Detection of circulating antibodies to linear peptide antigens derived from ANXA1 and DDX53 in lung cancer. Tumor Biol. 2014;35:4901–5.

    Article  CAS  Google Scholar 

  19. Ye L, Guan S, Zhang C, Lee KH, Sun S, Wei J, et al. Circulating autoantibody to FOXP3 may be a potential biomarker for esophageal squamous cell carcinoma. Tumour Biol. 2013;34:1873–7.

    Article  CAS  PubMed  Google Scholar 

  20. Xu YW, Peng YH, Chen B, Wu ZY, Wu JY, Shen JH, et al. Autoantibodies as potential biomarkers for the early detection of esophageal squamous cell carcinoma. Am J Gastroenterol. 2014;109:36–45.

    Article  CAS  PubMed  Google Scholar 

  21. Macdonald IK, Murray A, Healey GF, Parsy-Kowalska CB, Allen J, McElveen J, et al. Application of a high throughput method of biomarker discovery to improvement of the EarlyCDT(®)-Lung Test. PLoS One. 2012;7(12):e51002. doi:10.1371/journal.pone.0051002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu W, De La Torre IG, Gutiérrez-Rivera MC, Wang B, Liu Y, Dai L, et al. Detection of autoantibodies to multiple tumor-associated antigens (TAAs) in the immunodiagnosis of breast cancer. Tumour Biol. 2015;36(2):1307–12.

    Article  CAS  PubMed  Google Scholar 

  23. Cao XQ, Lu HS, Zhang L, Chen LL, Gan MF. MEKK3 and survivin expression in cervical cancer: association with clinicopathological factors and prognosis. Asian Pac J Cancer Prev. 2014;15:5271–6.

    Article  PubMed  Google Scholar 

  24. Sukpan K, Settakorn J, Khunamornpong S, Cheewakriangkrai C, Srisomboon J, Siriaunkgul S. Expression of survivin, CD117, and C-erbB-2 in neuroendocrine carcinoma of the uterine cervix. Int J Gynecol Cancer. 2011;21:911–7.

    Article  PubMed  Google Scholar 

  25. Hoffmann TK, Trellakis S, Okulicz K, Schuler P, Greve J, Arnolds J, et al. Cyclin B1 expression and p53 status in squamous cell carcinomas of the head and neck. Anticancer Res. 2011;31(10):3151–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Mussunoor S, Murray GI. The role of annexins in tumour development and progression. J Pathol. 2008;216:131–40.

    Article  CAS  PubMed  Google Scholar 

  27. Shi J, Zhou J. Role of CD4+ CD25+ regulatory T cells in peripheral blood from patients with papillary thyroid carcinoma. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2012;26(21):965–9. 972.(Article in Chinese).

    PubMed  Google Scholar 

  28. Gu Y, Wang C, Han D, Zhang L. Increased frequencies of CD4+ CD25+ FOXP3+ regulatory T cells in human nasal inverted papilloma. Head Neck. 2011;33:1005–12.

    Article  PubMed  Google Scholar 

  29. Caron M, Choquet-Kastylevsky G, Joubert-Caron R. Cancer immunomics using autoantibody signatures for biomarker discovery. Mol Cell Proteomics. 2007;6:1115–22.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Jilin Pharmaceutical Industry Development Special Fund Project (No. 130701YY01066802), and by Glory Biomedical Co. Ltd., Taipei, Taiwan. We would like to acknowledge Dr. Cui Manhua and colleagues for their help and support with serum sample processing.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Linlin Liu or Shilong Sun.

Ethics declarations

Conflicts of interest

None

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huangfu, M., Xu, S., Li, S. et al. A panel of autoantibodies as potential early diagnostic serum biomarkers in patients with cervical cancer. Tumor Biol. 37, 8709–8714 (2016). https://doi.org/10.1007/s13277-015-4472-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-4472-1

Keywords

Navigation