Advertisement

Tumor Biology

, Volume 37, Issue 5, pp 6267–6273 | Cite as

Combined analysis of pri-miR-34b/c rs4938723 and TP53 Arg72Pro with cervical cancer risk

  • Fang Yuan
  • Ruifen Sun
  • Peng Chen
  • Yundan Liang
  • Shanshan Ni
  • Yi Quan
  • Juan Huang
  • Lin Zhang
  • Linbo Gao
Original Article

Abstract

miR-34 family members can form a p53-miR-34 positive feedback loop and induce apoptosis, DNA repair, angiogenesis, and cell cycle arrest. We conducted a case-control study to examine whether two polymorphisms (i.e., rs4938723 in the promoter of pri-miR-34b/c and TP53 Arg72Pro) were linked to the carcinogenesis of cervical cancer among Chinese Han women. Genotypes of the two polymorphisms in 328 cervical cancer patients and 568 control subjects were determined by using a polymerase chain reaction—restriction fragment length polymorphism assay. We found a significantly increased cervical cancer risk in the pri-miR-34b/c rs4938723 under dominant and overdominant model (CT/CC vs. TT: adjusted OR = 1.34, 95 % CI = 1.01–1.77; CT vs. TT/CC: adjusted OR = 1.37, 95 % CI = 1.05–1.80, respectively). Increased cervical cancer risks were also found in the TP53 Arg72Pro under a heterozygous comparison and overdominant model (CG vs. GG: adjusted OR = 1.44, 95 % CI = 1.06–1.95; CG vs. GG/CC: adjusted OR = 1.47, 95 % CI = 1.12–1.94, respectively). Stratification analysis showed that patients carrying the pri-miR-34b/c rs4938723 CT genotype had a significantly increased risk for developing poorly differential status and clinical stage I. Moreover, increased cancer risks were observed for the TP53 Arg72Pro polymorphism in patients with poorly differential status, clinical stage II, and without lymph node metastasis. Combined analysis revealed that the genotypes of rs4938723 CT/CC and TP53 Arg72Pro CG/CC had an increased cervical cancer risk (OR = 2.21, 95 % CI = 1.38–3.53). These findings suggest that the pri-miR-34b/c rs4938723 and TP53 Arg72Pro polymorphisms may contribute to the genesis of cervical cancer.

Keywords

Cervical cancer pri-miR-34b/c TP53 Polymorphism 

Notes

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (No. 81302149, 81202387, 81560429), the PhD Programs Foundation of Ministry of Education of China (No. 20130181120011), Distinguished Young Scientist of Sichuan University (No. 2013SCU04A38), the Science & Technology Pillar Program of Sichuan Province (No. 2014SZ0001, 2013JY0013), and the Joint Project on Science and Technology Agency of Yunnan Province and Yunnan Traditional Chinese Medicine University.

Compliance with ethical standards

Conflicts of interest

None

References

  1. 1.
    Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108.CrossRefPubMedGoogle Scholar
  2. 2.
    Magnusson PK, Sparen P, Gyllensten UB. Genetic link to cervical tumours. Nature. 1999;400(6739):29–30.CrossRefPubMedGoogle Scholar
  3. 3.
    Falk IJ, Willander K, Chaireti R, Lund J, Nahi H, Hermanson M, et al. TP53 mutations and MDM2(SNP309) identify subgroups of AML patients with impaired outcome. Eur J Haematol. 2015;94(4):355–62.CrossRefPubMedGoogle Scholar
  4. 4.
    Ivansson EL, Juko-Pecirep I, Erlich HA, Gyllensten UB. Pathway-based analysis of genetic susceptibility to cervical cancer in situ: HLA-DPB1 affects risk in Swedish women. Genes Immun. 2011;12(8):605–14.CrossRefPubMedGoogle Scholar
  5. 5.
    Storey A, Thomas M, Kalita A, Harwood C, Gardiol D, Mantovani F, et al. Role of a p53 polymorphism in the development of human papillomavirus-associated cancer. Nature. 1998;393(6682):229–34.CrossRefPubMedGoogle Scholar
  6. 6.
    Kloth JN, Oosting J, van Wezel T, Szuhai K, Knijnenburg J, Gorter A, et al. Combined array-comparative genomic hybridization and single-nucleotide polymorphism-loss of heterozygosity analysis reveals complex genetic alterations in cervical cancer. BMC Genomics. 2007;8:53.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Guzman VB, Yambartsev A, Goncalves-Primo A, Silva ID, Carvalho CR, Ribalta JC, et al. New approach reveals CD28 and IFNG gene interaction in the susceptibility to cervical cancer. Hum Mol Genet. 2008;17(12):1838–44.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Zhang S, Qian J, Cao Q, Li P, Wang M, Wang J, et al. A potentially functional polymorphism in the promoter region of miR-34b/c is associated with renal cell cancer risk in a Chinese population. Mutagenesis. 2014;29(2):149–54.CrossRefPubMedGoogle Scholar
  9. 9.
    Xu Y, Liu L, Liu J, Zhang Y, Zhu J, Chen J, et al. A potentially functional polymorphism in the promoter region of miR-34b/c is associated with an increased risk for primary hepatocellular carcinoma. Int J Cancer. 2011;128(2):412–7.CrossRefPubMedGoogle Scholar
  10. 10.
    Son MS, Jang MJ, Jeon YJ, Kim WH, Kwon CI, Ko KH, et al. Promoter polymorphisms of pri-miR-34b/c are associated with hepatocellular carcinoma. Gene. 2013;524(2):156–60.CrossRefPubMedGoogle Scholar
  11. 11.
    Yang C, Ma X, Liu D, Wang Y, Tang R, Zhu Y, et al. Promoter polymorphisms of miR-34b/c are associated with risk of gastric cancer in a Chinese population. Tumour Biol: J Int Soc Oncodev Biol Med. 2014;35(12):12545–54.CrossRefGoogle Scholar
  12. 12.
    Oh J, Kim JW, Lee BE, Jang MJ, Chong SY, Park PW, et al. Polymorphisms of the pri-miR-34b/c promoter and TP53 codon 72 are associated with risk of colorectal cancer. Oncol Rep. 2014;31(2):995–1002.PubMedGoogle Scholar
  13. 13.
    Han Y, Pu R, Han X, Zhao J, Zhang Y, Zhang Q, et al. Associations of pri-miR-34b/c and pre-miR-196a2 polymorphisms and their multiplicative interactions with hepatitis B virus mutations with hepatocellular carcinoma risk. PLoS One. 2013;8(3):e58564.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Gao LB, Li LJ, Pan XM, Li ZH, Liang WB, Bai P, et al. A genetic variant in the promoter region of miR-34b/c is associated with a reduced risk of colorectal cancer. Biol Chem. 2013;394(3):415–20.CrossRefPubMedGoogle Scholar
  15. 15.
    Reshmi G, Surya R, Jissa VT, Babu PS, Preethi NR, Santhi WS, et al. C-T variant in a miRNA target site of BCL2 is associated with increased risk of human papilloma virus related cervical cancer—an in silico approach. Genomics. 2011;98(3):189–93.CrossRefPubMedGoogle Scholar
  16. 16.
    Hu X, Zhang Z, Ma D, Huettner PC, Massad LS, Nguyen L, et al. TP53, MDM2, NQO1, and susceptibility to cervical cancer. Cancer Epidemiol Biomark Prev. 2010;19(3):755–61.CrossRefGoogle Scholar
  17. 17.
    Li L, Sima X, Bai P, Zhang L, Sun H, Liang W, et al. Interactions of miR-34b/c and TP53 polymorphisms on the risk of intracranial aneurysm. Clin Dev Immunol. 2012;2012:567586.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Chen P, Sun R, Pu Y, Bai P, Yuan F, Liang Y, et al. Pri-Mir-34b/C and Tp-53 polymorphisms are associated with the susceptibility of papillary thyroid carcinoma: a case–control study. Medicine. 2015;94(38):e1536.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Rosenthal AN, Ryan A, Al-Jehani RM, Storey A, Harwood CA, Jacobs IJ. p53 codon 72 polymorphism and risk of cervical cancer in UK. Lancet. 1998;352(9131):871–2.CrossRefPubMedGoogle Scholar
  20. 20.
    Kang BW, Jeon HS, Chae YS, Lee SJ, Park JY, Choi JE, et al. Association between GWAS-identified genetic variations and disease prognosis for patients with colorectal cancer. PLoS One. 2015;10(3):e0119649.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Yang SD, Cai YL, Jiang P, Li W, Tang JX. Association of a miR-502-binding site single nucleotide polymorphism in the 3′-untranslated region of SET8 and the TP53 codon 72 polymorphism with cervical cancer in the Chinese population. Asian Pac J Cancer Prev: APJCP. 2014;15(16):6505–10.CrossRefPubMedGoogle Scholar
  22. 22.
    Pardini B, Bermejo JL, Naccarati A, Di Gaetano C, Rosa F, Legrand C, et al. Inherited variability in a master regulator polymorphism (rs4846126) associates with survival in 5-FU treated colorectal cancer patients. Mutat Res. 2014;766–767:7–13.CrossRefPubMedGoogle Scholar
  23. 23.
    Hu Z, Zhu D, Wang W, Li W, Jia W, Zeng X, et al. Genome-wide profiling of HPV integration in cervical cancer identifies clustered genomic hot spots and a potential microhomology-mediated integration mechanism. Nat Genet. 2015;47(2):158–63.CrossRefPubMedGoogle Scholar
  24. 24.
    Chen D, Cui T, Ek WE, Liu H, Wang H, Gyllensten U. Analysis of the genetic architecture of susceptibility to cervical cancer indicates that common SNPs explain a large proportion of the heritability. Carcinogenesis. 2015;36(9):992–8.CrossRefPubMedGoogle Scholar
  25. 25.
    Chen D, Enroth S, Ivansson E, Gyllensten U. Pathway analysis of cervical cancer genome-wide association study highlights the MHC region and pathways involved in response to infection. Hum Mol Genet. 2014;23(22):6047–60.CrossRefPubMedGoogle Scholar
  26. 26.
    Johanneson B, Chen D, Enroth S, Cui T, Gyllensten U. Systematic validation of hypothesis-driven candidate genes for cervical cancer in a genome-wide association study. Carcinogenesis. 2014;35(9):2084–8.CrossRefPubMedGoogle Scholar
  27. 27.
    Chen D, Gyllensten U. Lessons and implications from association studies and post-GWAS analyses of cervical cancer. Trends Genet: TIG. 2015;31(1):41–54.CrossRefPubMedGoogle Scholar
  28. 28.
    Wang X, Lu X, Fang Y, Chen H, Deng X, Peng C, et al. Association between miR34b/c polymorphism rs4938723 and cancer risk: a meta-analysis of 11 studies including 6169 cases and 6337 controls. Med Sci Monit: Int Med J Exp Clin Res. 2014;20:1977–82.CrossRefGoogle Scholar
  29. 29.
    Cheung TH, Man KN, Yu MY, Yim SF, Siu NS, Lo KW, et al. Dysregulated microRNAs in the pathogenesis and progression of cervical neoplasm. Cell Cycle. 2012;11(15):2876–84.CrossRefPubMedGoogle Scholar
  30. 30.
    Li L, Wu J, Sima X, Bai P, Deng W, Deng X, et al. Interactions of miR-34b/c and TP-53 polymorphisms on the risk of nasopharyngeal carcinoma. Tumour Biol. 2013;34(3):1919–23.CrossRefPubMedGoogle Scholar
  31. 31.
    Zhang J, Huang X, Xiao J, Yang Y, Zhou Y, Wang X, et al. Pri-miR-124 rs531564 and pri-miR-34b/c rs4938723 polymorphisms are associated with decreased risk of esophageal squamous cell carcinoma in Chinese populations. PLoS One. 2014;9(6):e100055.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Yin J, Wang X, Zheng L, Shi Y, Wang L, Shao A, et al. Hsa-miR-34b/c rs4938723 T>C and hsa-miR-423 rs6505162 C>A polymorphisms are associated with the risk of esophageal cancer in a Chinese population. PLoS One. 2013;8(11):e80570.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Pan XM, Sun RF, Li ZH, Guo XM, Qin HJ, Gao LB. Pri-miR-34b/c rs4938723 polymorphism is associated with a decreased risk of gastric cancer. Genet Test Mol Biomarkers. 2015;19(4):198–202.CrossRefPubMedGoogle Scholar
  34. 34.
    Chen D, Gyllensten U. Systematic investigation of contribution of genetic variation in the HLA-DP region to cervical cancer susceptibility. Carcinogenesis. 2014;35(8):1765–9.CrossRefPubMedGoogle Scholar
  35. 35.
    Yamakuchi M, Lowenstein CJ. MiR-34, SIRT1 and p53: the feedback loop. Cell Cycle. 2009;8(5):712–5.CrossRefPubMedGoogle Scholar
  36. 36.
    Okada N, Lin CP, Ribeiro MC, Biton A, Lai G, He X, et al. A positive feedback between p53 and miR-34 miRNAs mediates tumor suppression. Genes Dev. 2014;28(5):438–50.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Rokavec M, Li H, Jiang L, Hermeking H. The p53/miR-34 axis in development and disease. J Mol Cell Biol. 2014;6(3):214–30.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Fang Yuan
    • 1
  • Ruifen Sun
    • 1
    • 2
  • Peng Chen
    • 3
    • 4
  • Yundan Liang
    • 3
    • 4
  • Shanshan Ni
    • 5
  • Yi Quan
    • 5
  • Juan Huang
    • 5
  • Lin Zhang
    • 1
    • 3
    • 4
  • Linbo Gao
    • 3
    • 4
  1. 1.Department of Immunology, West China School of Preclinical and Forensic MedicineSichuan UniversityChengduChina
  2. 2.Central LaboratoryYunnan University of Traditional Chinese MedicineKunmingChina
  3. 3.Laboratory of Molecular and Translational Medicine, West China Institute of Women and Children’s Health, West China Second University HospitalSichuan UniversityChengduChina
  4. 4.Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University HospitalSichuan UniversityChengduChina
  5. 5.Department of Obstetrics and Gynaecology, West China Second University HospitalSichuan UniversityChengduChina

Personalised recommendations