Tumor Biology

, Volume 37, Issue 5, pp 6045–6051 | Cite as

Wnt/β-catenin signaling inhibits FBXW7 expression by upregulation of microRNA-770 in hepatocellular carcinoma

  • Wen-Jie Wu
  • Jia Shi
  • Gang Hu
  • Xin Yu
  • Han Lu
  • Ming-Liang Yang
  • Bin Liu
  • Zhi-Xiang Wu
Original Article


FBXW7 (F-box and WD repeat domain-containing 7) is the F-box protein component of a Skp1–Cul1–F-box protein–type (SCF-type) ubiquitin ligase. Previous studies have shown that FBXW7 serves as a tumor suppressor and is frequently downregulated in many types of human neoplasms. However, the molecular mechanisms for its downregulation remain poorly understood. Hyperactivation of Wnt/β-catenin signaling pathway is viewed as crucial for tumorigenesis, including hepatocellular carcinoma (HCC). In the present study, we show that protein levels, but not message RNA, of FBXW7 were suppressed by Wnt3a treatment or transfection of a constitutively activated β-catenin in HCC cells. Besides, microRNA-770 was identified as an important downstream target of Wnt/β-catenin signaling, to inhibit FBXW7 expression through targeting its 3′-untranslated region. Thus, our results suggest a previously unknown Wnt/β catenin–miR-770–FBXW7 molecular network in the HCC development.


Hepatocellular carcinoma (HCC) FBXW7 MicroRNA-770 Wnt/β catenin 



This work was supported by the National Natural Science Foundation, People’s Republic of China, Grant No. 31401185 (to Dr. Bin Liu) and No. 81402478 (to Dr. Zhi-Xiang Wu).

Compliance with ethical standards

Conflicts of interest



  1. 1.
    Skaar JR, Pagan JK, Pagano M. SCF ubiquitin ligase-targeted therapies. Nat Rev Drug Discov. 2014;13(12):889–903.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Skaar JR, Pagan JK, Pagano M. Mechanisms and function of substrate recruitment by F-box proteins. Nat Rev Mol Cell Biol. 2013;14(6):369–81.CrossRefPubMedGoogle Scholar
  3. 3.
    Wei R, Liu X, Yu W, Yang T, Cai W, Liu J, et al. Deubiquitinases in cancer. Oncotarget. 2015;6(15):12872–89.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Liu J, Shaik S, Dai X, Wu Q, Zhou X, Wang Z, et al. Targeting the ubiquitin pathway for cancer treatment. Biochim Biophys Acta. 2015;1855(1):50–60.PubMedGoogle Scholar
  5. 5.
    Bochis OV, Irimie A, Pichler M, Berindan-Neagoe I. The role of Skp2 and its substrate CDKN1B (p27) in colorectal cancer. J Gastrointestin Liver Dis. 2015;24(2):225–34.PubMedGoogle Scholar
  6. 6.
    Kitagawa K, Kotake Y, Kitagawa M. Ubiquitin-mediated control of oncogene and tumor suppressor gene products. Cancer Sci. 2009;100(8):1374–81.CrossRefPubMedGoogle Scholar
  7. 7.
    Wang L, Ye X, Liu Y, Wei W, Wang Z. Aberrant regulation of FBW7 in cancer. Oncotarget. 2014;5(8):2000–15.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Lau AW, Fukushima H, Wei W. The Fbw7 and betaTRCP E3 ubiquitin ligases and their roles in tumorigenesis. Front Biosci (Landmark Ed). 2012;17:2197–212.CrossRefGoogle Scholar
  9. 9.
    Mao JH, Kim IJ, Wu D, Climent J, Kang HC, DelRosario R, et al. FBXW7 targets mTOR for degradation and cooperates with PTEN in tumor suppression. Science. 2008;321(5895):1499–502.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Yada M, Hatakeyama S, Kamura T, Nishiyama M, Tsunematsu R, Imaki H, et al. Phosphorylation-dependent degradation of c-Myc is mediated by the F-box protein Fbw7. EMBO J. 2004;23(10):2116–25.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Koepp DM, Schaefer LK, Ye X, Keyomarsi K, Chu C, Harper JW, et al. Phosphorylation-dependent ubiquitination of cyclin E by the SCFFbw7 ubiquitin ligase. Science. 2001;294(5540):173–7.CrossRefPubMedGoogle Scholar
  12. 12.
    Nateri AS, Riera-Sans L, Da Costa C, Behrens A. The ubiquitin ligase SCFFbw7 antagonizes apoptotic JNK signaling. Science. 2004;303(5662):1374–8.CrossRefPubMedGoogle Scholar
  13. 13.
    Wu RC, Feng Q, Lonard DM, O’Malley BW. SRC-3 coactivator functional lifetime is regulated by a phospho-dependent ubiquitin time clock. Cell. 2007;129(6):1125–40.CrossRefPubMedGoogle Scholar
  14. 14.
    Onoyama I, Suzuki A, Matsumoto A, Tomita K, Katagiri H, Oike Y, et al. Fbxw7 regulates lipid metabolism and cell fate decisions in the mouse liver. J Clin Invest. 2011;121(1):342–54.CrossRefPubMedGoogle Scholar
  15. 15.
    Rajagopalan H, Lengauer C. hCDC4 and genetic instability in cancer. Cell Cycle. 2004;3(6):693–4.CrossRefPubMedGoogle Scholar
  16. 16.
    Koh MS, Ittmann M, Kadmon D, Thompson TC, Leach FS. CDC4 gene expression as potential biomarker for targeted therapy in prostate cancer. Cancer Biol Ther. 2006;5(1):78–83.CrossRefPubMedGoogle Scholar
  17. 17.
    Calcagno DQ, Freitas VM, Leal MF, de Souza CR, Demachki S, Montenegro R, et al. MYC, FBXW7 and TP53 copy number variation and expression in gastric cancer. BMC Gastroenterol. 2013;13:141.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Anastas JN, Moon RT. WNT signalling pathways as therapeutic targets in cancer. Nat Rev Cancer. 2013;13(1):11–26.CrossRefPubMedGoogle Scholar
  19. 19.
    Yu H, Lee H, Herrmann A, Buettner R, Jove R. Revisiting STAT3 signalling in cancer: new and unexpected biological functions. Nat Rev Cancer. 2014;14(11):736–46.CrossRefPubMedGoogle Scholar
  20. 20.
    Dweep H, Sticht C, Pandey P, Gretz N. miRWalk—database: prediction of possible miRNA binding sites by “walking” the genes of three genomes. J Biomed Inform. 2011;44(5):839–47.CrossRefPubMedGoogle Scholar
  21. 21.
    Kimura T, Gotoh M, Nakamura Y, Arakawa H. hCDC4b, a regulator of cyclin E, as a direct transcriptional target of p53. Cancer Sci. 2003;94(5):431–6.CrossRefPubMedGoogle Scholar
  22. 22.
    Mao JH, Perez-Losada J, Wu D, Delrosario R, Tsunematsu R, Nakayama KI, et al. Fbxw7/Cdc4 is a p53-dependent, haploinsufficient tumour suppressor gene. Nature. 2004;432(7018):775–9.CrossRefPubMedGoogle Scholar
  23. 23.
    Balamurugan K, Wang JM, Tsai HH, Sharan S, Anver M, Leighty R, et al. The tumour suppressor C/EBPδ inhibits FBXW7 expression and promotes mammary tumour metastasis. EMBO J. 2010;29(24):4106–17.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Sancho R, Blake SM, Tendeng C, Clurman BE, Lewis J, Behrens A. Fbw7 repression by hes5 creates a feedback loop that modulates Notch-mediated intestinal and neural stem cell fate decisions. PLoS Biol. 2013;11(6), e1001586.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Xu Y, Sengupta T, Kukreja L, Minella AC. MicroRNA-223 regulates cyclin E activity by modulating expression of F-box and WD-40 domain protein 7. J Biol Chem. 2010;285(45):34439–46.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Gong J, Cui Z, Li L, Ma Q, Wang Q, Gao Y, et al. MicroRNA-25 promotes gastric cancer proliferation, invasion, and migration by directly targeting F-box and WD-40 domain protein 7, FBXW7. Tumour Biol. 2015. [Epub ahead of print].Google Scholar
  27. 27.
    Zhou C, Shen L, Mao L, Wang B, Li Y, Yu H. miR-92a is upregulated in cervical cancer and promotes cell proliferation and invasion by targeting FBXW7. Biochem Biophys Res Commun. 2015;458(1):63–9.CrossRefPubMedGoogle Scholar
  28. 28.
    Ma J, Cheng L, Liu H, Zhang J, Shi Y, Zeng F, et al. Genistein down-regulates miR-223 expression in pancreatic cancer cells. Curr Drug Targets. 2013;14(10):1150–6.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  1. 1.Department of Pediatric SurgeryXin Hua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
  2. 2.Key Laboratory of Kidney Disease Pathogenesis and Intervention of Hubei Province, College of MedicineHubei Polytechnic UniversityHuangshiChina
  3. 3.Department of Anesthesiology, Ruijin HospitalShanghai Jiao-Tong University School of Medicine (SJTU-SM)ShanghaiChina
  4. 4.Department of AnesthesiologyJianli Second People’s HospitalJianliChina

Personalised recommendations