Tumor Biology

, Volume 37, Issue 5, pp 6709–6718 | Cite as

In search of underlying mechanisms and potential drugs of melphalan-induced vascular toxicity through retinal endothelial cells using bioinformatics approach

  • Yang Yang
  • Yiqiao Xing
  • Chaoqun Liang
  • Liya Hu
  • Fei Xu
  • Qi Mei
Original Article


We aimed to explore molecular mechanism and drug candidates of vascular toxicities associated with melphalan after treating human retinal endothelial cells (RECs). GSE34381 microarray data was firstly downloaded and used to identify the differentially expressed genes (DEGs) in human REC treated with melphalan vs. untreated cells by limma package in R language. The transcription network was constructed based on TRANSFAC database and the top five transcription factors (TFs) were select with a measure of regulatory impact factor, followed by the construction of function modules. Gene ontology enrichment analyses were performed to explore the enriched functions. Connectivity Map analysis was conducted to predict the potential drugs overcoming the melphalan’s actions on REC. Totally, 75 DEGs were identified, including 70 up-regulated and five down-regulated genes. Transcription network with 1311 nodes and 1875 edges was constructed and the top five TFs were CREM, MYC, FLI1, NF-κB1, and JUN. Functional modules indicated that NF-κB1 and MYC were the important nodes. The upregulated genes as well as the genes involved in the modules mainly participated in biological process of immune response, cell proliferation, and cell motion. Five small molecules were predicted to be potential drug candidates, including doxorubicin, fipexide, daunorubicin, tiabendazole, and GW-8510. Based on these results, we speculate that NF-κB1 and MYC might involve in the molecular mechanism of vascular toxicity induced by melphalan through regulating their target genes. Five small molecules might be drug candidates to overcome the melphalan-induced vascular toxicity via targeting to MYC and JUN.


Retinoblastoma Melphalan Transcription network Transcription factor Connectivity Map analysis 



This study was supported by the Hubei Provincial Natural Science Foundation of China (No. 2014CFB366).

Compliance with ethical standards

Conflicts of interest



  1. 1.
    Houston SK, Murray TG, Wolfe SQ, Fernandes CE. Current update on retinoblastoma. Int Ophthalmol Clin. 2011;51(1):77–91. doi: 10.1097/IIO.0b013e3182010f29.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Chintagumpala M, Chevez-Barrios P, Paysse EA, Plon SE, Hurwitz R. Retinoblastoma: review of current management. Oncologist. 2007;12(10):1237–46. doi: 10.1634/theoncologist.12-10-1237.CrossRefPubMedGoogle Scholar
  3. 3.
    Jehanne M, Brisse H, Gauthier-Villars M, Lumbroso-le Rouic L, Freneaux P, Aerts I. Retinoblastoma: recent advances. Bull Cancer. 2014;101(4):380–7.PubMedGoogle Scholar
  4. 4.
    Kivelä T. The epidemiological challenge of the most frequent eye cancer: retinoblastoma, an issue of birth and death. Br J Ophthalmol. 2009;93(9):1129–31.CrossRefPubMedGoogle Scholar
  5. 5.
    Chawla B, Jain A, Azad R. Conservative treatment modalities in retinoblastoma. Indian J Ophthalmol. 2013;61(9):479–85. doi: 10.4103/0301-4738.119424.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Vajzovic LM, Murray TG, Aziz-Sultan MA, Schefler AC, Fernandes CE, Wolfe SC, et al. Clinicopathologic review of enucleated eyes after intra-arterial chemotherapy with melphalan for advanced retinoblastoma. Arch Ophthalmol. 2010;128(12):1619–23. doi: 10.1001/archophthalmol.2010.296.CrossRefPubMedGoogle Scholar
  7. 7.
    Reese AB, Hyman GA, Tapley ND, Forrest AW. The treatment of retinoblastoma by x-ray and triethylene melamine. AMA Arch Ophthalmol. 1958;60(5):897–906.CrossRefPubMedGoogle Scholar
  8. 8.
    Kiribuchi M. Retrograde infusion of anti-cancer drugs to ophthalmic artery for intraocular malignant tumors. Nihon Ganka Gakkai Zasshi. 1966;70(11):1829–33.PubMedGoogle Scholar
  9. 9.
    Samuels BL, Bitran JD. High-dose intravenous melphalan: a review. J Clin Oncol. 1995;13(7):1786–99.CrossRefPubMedGoogle Scholar
  10. 10.
    Doll DC, Ringenberg QS, Yarbro J. Vascular toxicity associated with antineoplastic agents. J Clin Oncol. 1986;4(9):1405–17.CrossRefPubMedGoogle Scholar
  11. 11.
    Scutaru AM, Wenzel M, Scheffler H, Wolber G, Gust R. Optimization of the N-lost drugs melphalan and bendamustine: synthesis and cytotoxicity of a new set of dendrimer-drug conjugates as tumor therapeutic agents. Bioconjug Chem. 2010;21(10):1728–43. doi: 10.1021/bc900453f.CrossRefPubMedGoogle Scholar
  12. 12.
    Steinle JJ, Zhang Q, Thompson KE, Toutounchian J, Yates CR, Soderland C, et al. Intra-ophthalmic artery chemotherapy triggers vascular toxicity through endothelial cell inflammation and leukostasis. Invest Ophthalmol Vis Sci. 2012;53(4):2439–45. doi: 10.1167/iovs.12-9466.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Zhang Q, Jiang Y, Toutounchian J, Wilson MW, Morales-Tirado V, Miller DD, et al. Novel quinic acid derivative KZ-41 prevents retinal endothelial cell apoptosis without inhibiting retinoblastoma cell death through p38 signaling. Invest Ophthalmol Vis Sci. 2013;54(9):5937–43.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, et al. NCBI GEO: archive for functional genomics data sets—update. Nucleic Acids Res. 2013;41(Database issue):D991–5. doi: 10.1093/nar/gks1193.CrossRefPubMedGoogle Scholar
  15. 15.
    Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics. 2003;4(2):249–64. doi: 10.1093/biostatistics/4.2.249.CrossRefPubMedGoogle Scholar
  16. 16.
    Gautier L, Cope L, Bolstad BM, Irizarry RA. affy—analysis of Affymetrix GeneChip data at the probe level. Bioinformatics. 2004;20(3):307–15.CrossRefPubMedGoogle Scholar
  17. 17.
    Diboun I, Wernisch L, Orengo CA, Koltzenburg M. Microarray analysis after RNA amplification can detect pronounced differences in gene expression using limma. BMC Genomics. 2006;7:252. doi: 10.1186/1471-2164-7-252.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    da Huang W, Sherman BT, Tan Q, Collins JR, Alvord WG, Roayaei J, et al. The DAVID gene functional classification tool: a novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biol. 2007;8(9):R183. doi: 10.1186/gb-2007-8-9-r183.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet. 2000;25(1):25–9. doi: 10.1038/75556.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Wingender E, Dietze P, Karas H, Knüppel R. TRANSFAC: a database on transcription factors and their DNA binding sites. Nucleic Acids Res. 1996;24(1):238–41.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Kohl M, Wiese S, Warscheid B. Cytoscape: software for visualization and analysis of biological networks. Methods Mol Biol. 2011;696:291–303. doi: 10.1007/978-1-60761-987-1_18.CrossRefPubMedGoogle Scholar
  22. 22.
    Reverter A, Hudson NJ, Nagaraj SH, Perez-Enciso M, Dalrymple BP. Regulatory impact factors: unraveling the transcriptional regulation of complex traits from expression data. Bioinformatics. 2010;26(7):896–904. doi: 10.1093/bioinformatics/btq051.CrossRefPubMedGoogle Scholar
  23. 23.
    Wu C, Zhu J, Zhang X. Integrating gene expression and protein-protein interaction network to prioritize cancer-associated genes. BMC Bioinformatics. 2012;13:182. doi: 10.1186/1471-2105-13-182.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, et al. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science. 2006;313(5795):1929–35.CrossRefPubMedGoogle Scholar
  25. 25.
    Shields CL, Bianciotto CG, Jabbour P, Griffin GC, Ramasubramanian A, Rosenwasser R, et al. Intra-arterial chemotherapy for retinoblastoma: report no. 2, treatment complications. Arch Ophthalmol. 2011;129(11):1407–15.CrossRefPubMedGoogle Scholar
  26. 26.
    Bharti AC, Aggarwal BB. Nuclear factor-kappa B and cancer: its role in prevention and therapy. Biochem Pharmacol. 2002;64(5–6):883–8.CrossRefPubMedGoogle Scholar
  27. 27.
    O’Neill LA, Kaltschmidt C. NF-kB: a crucial transcription factor for glial and neuronal cell function. Trends Neurosci. 1997;20(6):252–8.CrossRefPubMedGoogle Scholar
  28. 28.
    Soultati A, Mountzios G, Avgerinou C, Papaxoinis G, Pectasides D, Dimopoulos MA, et al. Endothelial vascular toxicity from chemotherapeutic agents: preclinical evidence and clinical implications. Cancer Treat Rev. 2012;38(5):473–83. doi: 10.1016/j.ctrv.2011.09.002.CrossRefPubMedGoogle Scholar
  29. 29.
    Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420(6917):860–7. doi: 10.1038/nature01322.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Poddar R, Sivasubramanian N, DiBello PM, Robinson K, Jacobsen DW. Homocysteine induces expression and secretion of monocyte chemoattractant protein-1 and interleukin-8 in human aortic endothelial cells implications for vascular disease. Circulation. 2001;103(22):2717–23.CrossRefPubMedGoogle Scholar
  31. 31.
    Staunton DE, Marlin SD, Stratowa C, Dustin ML, Springer TA. Primary structure of ICAM-1 demonstrates interaction between members of the immunoglobulin and integrin supergene families. Cell. 1988;52(6):925–33.CrossRefPubMedGoogle Scholar
  32. 32.
    Duckers HJ, Boehm M, True AL, Yet SF, San H, Park JL, et al. Heme oxygenase-1 protects against vascular constriction and proliferation. Nat Med. 2001;7(6):693–8. doi: 10.1038/89068.CrossRefPubMedGoogle Scholar
  33. 33.
    Van de Stolpe A, Caldenhoven E, Stade BG, Koenderman L, Raaijmakers J, Johnson JP, et al. 12-O-tetradecanoylphorbol-13-acetate-and tumor necrosis factor alpha-mediated induction of intercellular adhesion molecule-1 is inhibited by dexamethasone. Functional analysis of the human intercellular adhesion molecular-1 promoter. J Biol Chem. 1994;269(8):6185–92.PubMedGoogle Scholar
  34. 34.
    Liu MT, Keirstead HS, Lane TE. Neutralization of the chemokine CXCL10 reduces inflammatory cell invasion and demyelination and improves neurological function in a viral model of multiple sclerosis. J Immunol. 2001;167(7):4091–7.CrossRefPubMedGoogle Scholar
  35. 35.
    Knudsen TB, Kleinstreuer NC. Disruption of embryonic vascular development in predictive toxicology. Birth Defects Res C Embryo Today. 2011;93(4):312–23. doi: 10.1002/bdrc.20223.CrossRefPubMedGoogle Scholar
  36. 36.
    Butler JM, Kobayashi H, Rafii S. Instructive role of the vascular niche in promoting tumour growth and tissue repair by angiocrine factors. Nat Rev Cancer. 2010;10(2):138–46. doi: 10.1038/nrc2791.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Amati B, Land H. Myc-Max-Mad: a transcription factor network controlling cell cycle progression, differentiation and death. Curr Opin Genet Dev. 1994;4(1):102–8.CrossRefPubMedGoogle Scholar
  38. 38.
    Kipshidze NN, Iversen P, Kim HS, Yiazdi H, Dangas G, Seaborn R, et al. Advanced c-myc antisense (AVI-4126)-eluting phosphorylcholine-coated stent implantation is associated with complete vascular healing and reduced neointimal formation in the porcine coronary restenosis model. Catheter Cardiovasc Interv. 2004;61(4):518–27.CrossRefPubMedGoogle Scholar
  39. 39.
    Doll DC, Yarbro JW. Vascular toxicity associated with chemotherapy and hormonotherapy. Curr Opin Oncol. 1994;6(4):345–50.CrossRefPubMedGoogle Scholar
  40. 40.
    Bjørkøy G, Lamark T, Brech A, Outzen H, Perander M, Øvervatn A, et al. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol. 2005;171(4):603–14.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Mathew R, Karantza-Wadsworth V, White E. Role of autophagy in cancer. Nat Rev Cancer. 2007;7(12):961–7.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Murata T, Yamawaki H, Yoshimoto R, Hori M, Sato K, Ozaki H, et al. Chronic effect of doxorubicin on vascular endothelium assessed by organ culture study. Life Sci. 2001;69(22):2685–95.CrossRefPubMedGoogle Scholar
  43. 43.
    Wojcik T, Buczek E, Majzner K, Kolodziejczyk A, Miszczyk J, Kaczara P, et al. Comparative endothelial profiling of doxorubicin and daunorubicin in cultured endothelial cells. Toxicol In Vitro. 2015;29(3):512–21.CrossRefPubMedGoogle Scholar
  44. 44.
    Jr FF, Jarvis WD, Grant S. Growth arrest and non-apoptotic cell death associated with the suppression of c-myc expression in MCF-7 breast tumor cells following acute exposure to doxorubicin. Biochem Pharmacol. 1996;51(7):931–40.CrossRefGoogle Scholar
  45. 45.
    Javelaud D, Wietzerbin J, Delattre O, Besançon F. Induction of p21Waf1/Cip1 by TNF|[alpha]| requires NF-|[kappa]|B activity and antagonizes apoptosis in Ewing tumor cells. Oncogene. 2000;19(1):61–8.CrossRefPubMedGoogle Scholar
  46. 46.
    Cha HJ, Byrom M, Mead PE, Ellington AD, Wallingford JB, Marcotte EM. Evolutionarily repurposed networks reveal the well-known antifungal drug thiabendazole to be a novel vascular disrupting agent. Plos Biol. 2012;10(8):255–70.CrossRefGoogle Scholar
  47. 47.
    Dunn C, Wiltshire C, MacLaren A, Gillespie DA. Molecular mechanism and biological functions of c-Jun N-terminal kinase signalling via the c-Jun transcription factor. Cell Signal. 2002;14(7):585–93.CrossRefPubMedGoogle Scholar
  48. 48.
    Fogelstrand P, Feral CC, Zargham R, Ginsberg MH. Dependence of proliferative vascular smooth muscle cells on CD98hc (4F2hc, SLC3A2). J Exp Med. 2009;206(11):2397–406.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Yang Yang
    • 1
  • Yiqiao Xing
    • 1
  • Chaoqun Liang
    • 1
  • Liya Hu
    • 2
  • Fei Xu
    • 2
  • Qi Mei
    • 2
  1. 1.Department of OphthalmologyRenmin Hospital of Wuhan UniversityWuhanChina
  2. 2.Department of OncologyTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina

Personalised recommendations