Tumor Biology

, Volume 37, Issue 5, pp 6007–6016 | Cite as

Aspirin acetylates wild type and mutant p53 in colon cancer cells: identification of aspirin acetylated sites on recombinant p53

  • Guoqiang Ai
  • Rakesh Dachineni
  • D. Ramesh Kumar
  • Srinivasan Marimuthu
  • Lloyd F. Alfonso
  • G. Jayarama Bhat
Original Article

Abstract

Aspirin’s ability to inhibit cell proliferation and induce apoptosis in cancer cell lines is considered to be an important mechanism for its anti-cancer effects. We previously demonstrated that aspirin acetylated the tumor suppressor protein p53 at lysine 382 in MDA-MB-231 human breast cancer cells. Here, we extended these observations to human colon cancer cells, HCT 116 harboring wild type p53, and HT-29 containing mutant p53. We demonstrate that aspirin induced acetylation of p53 in both cell lines in a concentration-dependent manner. Aspirin-acetylated p53 was localized to the nucleus. In both cell lines, aspirin induced p21CIP1. Aspirin also acetylated recombinant p53 (rp53) in vitro suggesting that it occurs through a non-enzymatic chemical reaction. Mass spectrometry analysis and immunoblotting identified 10 acetylated lysines on rp53, and molecular modeling showed that all lysines targeted by aspirin are surface exposed. Five of these lysines are localized to the DNA-binding domain, four to the nuclear localization signal domain, and one to the C-terminal regulatory domain. Our results suggest that aspirin’s anti-cancer effect may involve acetylation and activation of wild type and mutant p53 and induction of target gene expression. This is the first report attempting to characterize p53 acetylation sites targeted by aspirin.

Keywords

Aspirin Acetylation p53 Apoptosis Anti-cancer effects 

Notes

Acknowledgments

Supports from the Translational Cancer Research Seed Grant, funded as 2010 Research Initiative Center by the State of South Dakota, Faculty Excellence Fund from South Dakota State University, and from NIH (5RO3CA133061-02) to GJB are gratefully acknowledged. We also thank Raghavender Chivukula, Texas Tech University Health Science Center for helpful discussions and Dr. Fred Hagen, University of Rochester Medical Center, Rochester, NY, for carrying out MS analysis. Support to D. Ramesh Kumar to conduct molecular docking studies from the Department of Aquatic animal health division, CIBA, Chennai, India, is also gratefully acknowledged.

Compliance with ethical standards

Conflicts of interests

None

Supplementary material

13277_2015_4438_MOESM1_ESM.pdf (524 kb)
ESM 1 (PDF 523 kb)

References

  1. 1.
    Baron JA, Cole BF, Sandler RS, Haile RW, Ahnen D, Bresalier R, et al. A randomized trial of aspirin to prevent colorectal adenomas. N Engl J Med. 2003;348:891–9.CrossRefPubMedGoogle Scholar
  2. 2.
    Sandler RS, Halabi S, Baron JA, Budinger S, Paskett E, Keresztes R, et al. A randomized trial of aspirin to prevent colorectal adenomas in patients with previous colorectal cancer. New England Journal of Medicine. 2003;348:883–90.CrossRefPubMedGoogle Scholar
  3. 3.
    Benamouzig R, Deyra J, Martin A, Girard B, Jullian E, Piednoir B, et al. Daily soluble aspirin and prevention of colorectal adenoma recurrence: one-year results of the apacc trial. Gastroenterology. 2003;125:328–36.CrossRefPubMedGoogle Scholar
  4. 4.
    Rothwell PM, Wilson M, Price JF, Belch JF, Meade TW, Mehta Z. Effect of daily aspirin on risk of cancer metastasis: a study of incident cancers during randomised controlled trials. The Lancet. 2012;379:1591–601.CrossRefGoogle Scholar
  5. 5.
    Bousserouel S, Gosse F, Bouhadjar M, Soler L, Marescaux J, Raul F. Long-term administration of aspirin inhibits tumour formation and triggers anti-neoplastic molecular changes in a pre-clinical model of colon carcinogenesis. Oncology reports. 2010;23:511–7.PubMedGoogle Scholar
  6. 6.
    Reddy BS, Rao CV, Rivenson A, Kelloff G. Inhibitory effect of aspirin on azoxymethane-induced colon carcinogenesis in f344 rats. Carcinogenesis. 1993;14:1493–7.CrossRefPubMedGoogle Scholar
  7. 7.
    Wargovich MJ, Chen CD, Harris C, Yang E, Velasco M. Inhibition of aberrant crypt growth by non-steroidal anti-inflammatory agents and differentiation agents in the rat colon. International journal of cancer Journal international du cancer. 1995;60:515–9.CrossRefPubMedGoogle Scholar
  8. 8.
    Shpitz B, Bomstein Y, Kariv N, Shalev M, Buklan G, Bernheim J. Chemopreventive effect of aspirin on growth of aberrant crypt foci in rats. International journal of colorectal disease. 1998;13:169–72.CrossRefPubMedGoogle Scholar
  9. 9.
    Zhou XM, Wong BC, Fan XM, Zhang HB, Lin MC, Kung HF, et al. Non-steroidal anti-inflammatory drugs induce apoptosis in gastric cancer cells through up-regulation of bax and bak. Carcinogenesis. 2001;22:1393–7.CrossRefPubMedGoogle Scholar
  10. 10.
    Gu Q, Wang JD, Xia HH, Lin MC, He H, Zou B, et al. Activation of the caspase-8/bid and bax pathways in aspirin-induced apoptosis in gastric cancer. Carcinogenesis. 2005;26:541–6.CrossRefPubMedGoogle Scholar
  11. 11.
    Gao J, Niwa K, Sun W, Takemura M, Lian Z, Onogi K, et al. Non-steroidal anti-inflammatory drugs inhibit cellular proliferation and upregulate cyclooxygenase-2 protein expression in endometrial cancer cells. Cancer science. 2004;95:901–7.CrossRefPubMedGoogle Scholar
  12. 12.
    Piqué M, Barragán M, Dalmau M, Bellosillo B, Pons G, Gil J. Aspirin induces apoptosis through mitochondrial cytochrome c release. FEBS letters. 2000;480:193–6.CrossRefPubMedGoogle Scholar
  13. 13.
    Bellosillo B, Piqué M, Barragán M, Castaño E, Villamor N, Colomer D, et al. Aspirin and salicylate induce apoptosis and activation of caspases in b-cell chronic lymphocytic leukemia cells. Blood. 1998;92:1406–14.PubMedGoogle Scholar
  14. 14.
    Zimmermann KC, Waterhouse NJ, Goldstein JC, Schuler M, Green DR. Aspirin induces apoptosis through release of cytochrome c from mitochondria. Neoplasia. 2000;2:505–13.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Dikshit P, Chatterjee M, Goswami A, Mishra A, Jana NR. Aspirin induces apoptosis through the inhibition of proteasome function. The Journal of biological chemistry. 2006;281:29228–35.CrossRefPubMedGoogle Scholar
  16. 16.
    Thun MJ, Jacobs EJ, Patrono C. The role of aspirin in cancer prevention. Nature reviews Clinical oncology. 2012;9:259–67.CrossRefPubMedGoogle Scholar
  17. 17.
    Kopp E, Ghosh S. Inhibition of nf-kappa b by sodium salicylate and aspirin. Science. 1994;265:956–9.CrossRefPubMedGoogle Scholar
  18. 18.
    Bos CL, Kodach LL, van den Brink GR, Diks SH, van Santen MM, Richel DJ, et al. Effect of aspirin on the wnt/β-catenin pathway is mediated via protein phosphatase 2a. Oncogene. 2006;25:6447–56.CrossRefPubMedGoogle Scholar
  19. 19.
    Ai G, Dachineni R, Muley P, Tummala H, Bhat GJ. Aspirin and salicylic acid decrease c-myc expression in cancer cells: a potential role in chemoprevention. Tumour biology: the journal of the International Society for Oncodevelopmental Biology and Medicine 2015;1–12.Google Scholar
  20. 20.
    Pathi S, Jutooru I, Chadalapaka G, Nair V, Lee SO, Safe S. Aspirin inhibits colon cancer cell and tumor growth and downregulates specificity protein (sp) transcription factors. PloS one. 2012;7, e48208.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Din FV, Valanciute A, Houde VP, Zibrova D, Green KA, Sakamoto K, et al. Aspirin inhibits mTOR signaling, activates amp-activated protein kinase, and induces autophagy in colorectal cancer cells. Gastroenterology. 2012;142:1504–15 e3.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Li H, Zhu F, Boardman LA, Wang L, Oi N, Liu K, et al. Aspirin prevents colorectal cancer by normalizing egfr expression. EBioMedicine. 2015;2:447–55.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Alfonso L, Ai G, Spitale RC, Bhat GJ. Molecular targets of aspirin and cancer prevention. British journal of cancer 2014Google Scholar
  24. 24.
    Dovizio M, Bruno A, Tacconelli S, Patrignani P. Mode of action of aspirin as a chemopreventive agent. Recent results in cancer research Fortschritte der Krebsforschung Progres dans les recherches sur le cancer 2013;191:39–65.Google Scholar
  25. 25.
    Harris SL, Levine AJ. The p53 pathway: positive and negative feedback loops. Oncogene. 2005;24:2899–908.CrossRefPubMedGoogle Scholar
  26. 26.
    Slee EA, O’Connor DJ, Lu X. To die or not to die: how does p53 decide? Oncogene. 2004;23:2809–18.CrossRefPubMedGoogle Scholar
  27. 27.
    Bode AM, Dong Z. Post-translational modification of p53 in tumorigenesis. Nature Reviews Cancer. 2004;4:793–805.CrossRefPubMedGoogle Scholar
  28. 28.
    Gu W, Roeder RG. Activation of p53 sequence-specific DNA binding by acetylation of the p53 c-terminal domain. Cell. 1997;90:595–606.CrossRefPubMedGoogle Scholar
  29. 29.
    Bieging KT, Mello SS, Attardi LD. Unravelling mechanisms of p53-mediated tumour suppression. Nature reviews Cancer. 2014;14:359–70.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Alfonso LF, Srivenugopal KS, Arumugam TV, Abbruscato TJ, Weidanz JA, Bhat GJ. Aspirin inhibits camptothecin-induced p21cip1 levels and potentiates apoptosis in human breast cancer cells. International journal of oncology. 2009;34:597–608.PubMedGoogle Scholar
  31. 31.
    Huang L, Wong CC, Cheng KW, Rigas B. Phospho-aspirin-2 (mdc-22) inhibits estrogen receptor positive breast cancer growth both in vitro and in vivo by a redox-dependent effect. 2014.Google Scholar
  32. 32.
    Huang L, Wong CC, Mackenzie GG, Sun Y, Cheng KW, Vrankova K, et al. Phospho-aspirin (mdc-22) inhibits breast cancer in preclinical animal models: an effect mediated by egfr inhibition, p53 acetylation and oxidative stress. BMC cancer. 2014;14:141.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    O’Connor PM, Jackman J, Bae I, Myers TG, Fan S, Mutoh M, et al. Characterization of the p53 tumor suppressor pathway in cell lines of the national cancer institute anticancer drug screen and correlations with the growth-inhibitory potency of 123 anticancer agents. Cancer research. 1997;57:4285–300.PubMedGoogle Scholar
  34. 34.
    Karplus K. Sam-t08, hmm-based protein structure prediction. Nucleic acids research. 2009;37:W492–7.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Carter S, Vousden KH. Modifications of p53: competing for the lysines. Current opinion in genetics & development. 2009;19:18–24.CrossRefGoogle Scholar
  36. 36.
    Alzate O, Parker CE, Mocanu V, Mocanu M, Dicheva N, Warren MR. Mass spectrometry for post-translational modifications. 2010.Google Scholar
  37. 37.
    Pinckard RN, Hawkins D, Farr RS. In vitro acetylation of plasma proteins, enzymes and DNA by aspirin. Nature. 1968;219:68–9.CrossRefPubMedGoogle Scholar
  38. 38.
    Borthwick GM, Johnson AS, Partington M, Burn J, Wilson R, Arthur HM. Therapeutic levels of aspirin and salicylate directly inhibit a model of angiogenesis through a cox-independent mechanism. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2006;20:2009–16.CrossRefGoogle Scholar
  39. 39.
    Dai C, Gu W. P53 post-translational modification: deregulated in tumorigenesis. Trends in molecular medicine. 2010;16:528–36.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Rodriguez MS, Desterro JM, Lain S, Lane DP, Hay RT. Multiple c-terminal lysine residues target p53 for ubiquitin-proteasome-mediated degradation. Molecular and cellular biology. 2000;20:8458–67.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Lee J, Gu W. The multiple levels of regulation by p53 ubiquitination. Cell Death & Differentiation. 2010;17:86–92.CrossRefGoogle Scholar
  42. 42.
    Knights CD, Catania J, Di Giovanni S, Muratoglu S, Perez R, Swartzbeck A, et al. Distinct p53 acetylation cassettes differentially influence gene-expression patterns and cell fate. The Journal of cell biology. 2006;173:533–44.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Sykes SM, Mellert HS, Holbert MA, Li K, Marmorstein R, Lane WS, et al. Acetylation of the p53 DNA-binding domain regulates apoptosis induction. Molecular cell. 2006;6:841–51.CrossRefGoogle Scholar
  44. 44.
    Ho CC, Yang X, Lee TL, Liao PH, Yang SH, Tsai CH, et al. Activation of p53 signalling in acetylsalicylic acid‐induced apoptosis in oc2 human oral cancer cells. European journal of clinical investigation. 2003;33:875–82.CrossRefPubMedGoogle Scholar
  45. 45.
    Campomenosi P, Monti P, Aprile A, Abbondandolo A, Frebourg T, Gold B, et al. P53 mutants can often transactivate promoters containing a p21 but not bax or pig3 responsive elements. Oncogene. 2001;20:3573–9.CrossRefPubMedGoogle Scholar
  46. 46.
    Muller PA, Vousden KH. Mutant p53 in cancer: new functions and therapeutic opportunities. Cancer cell. 2014;25:304–17.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Wiman K. Pharmacological reactivation of mutant p53: from protein structure to the cancer patient. Oncogene. 2010;29:4245–52.CrossRefPubMedGoogle Scholar
  48. 48.
    Cheok CF, Verma CS, Baselga J, Lane DP. Translating p53 into the clinic. Nature reviews Clinical oncology. 2011;8:25–37.CrossRefPubMedGoogle Scholar
  49. 49.
    Wang W, El-Deiry WS. Restoration of p53 to limit tumor growth. Current opinion in oncology. 2008;20:90–6.CrossRefPubMedGoogle Scholar
  50. 50.
    Bykov VJ, Issaeva N, Zache N, Shilov A, Hultcrantz M, Bergman J, et al. Reactivation of mutant p53 and induction of apoptosis in human tumor cells by maleimide analogs. Journal of Biological Chemistry. 2005;280:30384–91.CrossRefPubMedGoogle Scholar
  51. 51.
    Perez RE, Knights CD, Sahu G, Catania J, Kolukula VK, Stoler D, et al. Restoration of DNA‐binding and growth‐suppressive activity of mutant forms of p53 via a pcaf‐mediated acetylation pathway. Journal of cellular physiology. 2010;225:394–405.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Marimuthu S, Chivukula RS, Alfonso LF, Moridani M, Hagen FK, Bhat GJ. Aspirin acetylates multiple cellular proteins in hct-116 colon cancer cells: Identification of novel targets. International journal of oncology. 2011;39:1273–83.PubMedGoogle Scholar
  53. 53.
    Bateman LA, Zaro BW, Miller SM, Pratt MR. An alkyne-aspirin chemical reporter for the detection of aspirin-dependent protein modification in living cells. Journal of the American Chemical Society. 2013;135:14568–73.CrossRefPubMedGoogle Scholar
  54. 54.
    Wang J, Zhang C-J, Zhang J, He Y, Lee YM, Chen S, Lim TK, Ng S, Shen H-M, Lin Q. Mapping sites of aspirin-induced acetylations in live cells by quantitative acid-cleavable activity-based protein profiling (qa-abpp). Scientific reports 2015;5.Google Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Guoqiang Ai
    • 1
  • Rakesh Dachineni
    • 1
  • D. Ramesh Kumar
    • 1
  • Srinivasan Marimuthu
    • 3
  • Lloyd F. Alfonso
    • 2
  • G. Jayarama Bhat
    • 1
  1. 1.Department of Pharmaceutical Sciences, College of Pharmacy, Avera Health and Sciences CenterSouth Dakota State UniversityBrookingsUSA
  2. 2.School of PharmacyD’Youville CollegeBuffaloUSA
  3. 3.Ayurveda Research Institute for Mother & Child Health CareTrivandrumIndia

Personalised recommendations