Advertisement

Tumor Biology

, Volume 37, Issue 4, pp 5539–5549 | Cite as

Identification of CTNNB1 mutations, CTNNB1 amplifications, and an Axin2 splice variant in juvenile angiofibromas

  • Silke Wemmert
  • Vivienne Willnecker
  • Philipp Kulas
  • Stefanie Weber
  • Cornelia Lerner
  • Sabrina Berndt
  • Olaf Wendler
  • Bernhard Schick
Original Article

Abstract

Juvenile angiofibromas (JAs) are benign fibro-vascular tumors occurring nearly exclusively in adolescent males. Even less is known about this rare tumor entity, alterations affecting the Wnt-pathway seem to play a pivotal role in tumor biology as activating CTNNB1 mutations have been detected. However, the knowledge of Wnt-pathway changes is still limited. Therefore, we aimed to determine in JAs further insight into Wnt/β-catenin pathway components. In our present study, genetic alterations of the Wnt-pathway members CTNNB1, APC, GSK3β, and Axin2 detected by metaphase comparative genomic hybridization (CGH) were shown to result in elevated transcript levels in the majority of JA samples compared to nasal mucosa stroma (p < 0.001, p = 0.001, p = 0.046, and p = 0.006, respectively). Additionally, amplifications of CTNNB1 were validated by fluorescence in situ hybridization (FISH) and genomic qPCR. Moreover, our mutation analysis detected already known mutations as well as, to the best of our knowledge, mutations and an interstitial deletion of CTNNB1 not described in JAs before. Additionally, a so far unknown transcribed Axin2 splice variant was found, but no further Axin2 mutations. Taken together, our current study supports the importance of aberrant Wnt-signaling as a common event in JAs, most likely by the observed genetic alterations driven by mutations, interstitial deletions but also amplifications of CTNNB1 contributing to the stabilization of β-catenin.

Keywords

Juvenile angiofibroma β-Catenin Mutations qPCR FISH 

Notes

Compliance with ethical standards

Conflicts of interest

None

Supplementary material

13277_2015_4422_MOESM1_ESM.docx (15 kb)
ESM 1 (DOCX 14 kb)

References

  1. 1.
    McCombe A, Lund VJ, Howard DJ. Recurrence in juvenile angiofibroma. Rhinology. 1990;28:97–102.PubMedGoogle Scholar
  2. 2.
    Tewfik TL, Tan AK, al Noury K, Chowdhury K, Tampieri D, Raymond J, et al. Juvenile nasopharyngeal angiofibroma. J Otolaryngol. 1999;28:145–51.PubMedGoogle Scholar
  3. 3.
    Beham A, Beham-Schmid C, Regauer S, Auböck L, Stammberger H. Nasopharyngeal angiofibroma: true neoplasm or vascular malformation? Adv Anat Pathol. 2000;7:36–46.CrossRefPubMedGoogle Scholar
  4. 4.
    Schick B, Urbschat S. New aspects of pathogenesis of juvenile angiofibroma. Hosp Med. 2004;65:269–73.CrossRefPubMedGoogle Scholar
  5. 5.
    Ferouz AS, Mohr RM, Paul P. Juvenile nasopharyngeal angiofibroma and familial adenomatous polyposis: an association? Otolaryngol Head Neck Surg. 1995;113:435–9.CrossRefPubMedGoogle Scholar
  6. 6.
    Giardiello FM, Hamilton SR, Krush AJ, Offerhaus JA, Booker SV, Petersen GM. Nasopharyngeal angiofibroma in patients with familial adenomatous polyposis. Gastroenterology. 1993;105:1550–2.CrossRefPubMedGoogle Scholar
  7. 7.
    Kinzler KW, Nilbert MC, Su LK, Vogelstein B, Bryan TM, Levy DB, et al. Identification of FAP locus genes from chromosome 5q21. Science. 1991;253:661–5.CrossRefPubMedGoogle Scholar
  8. 8.
    Nishisho I, Nakamura Y, Miyoshi Y, Miki Y, Ando H, Horii A, et al. Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. Science. 1991;253:665–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Abraham SC, Montgomery EA, Giardiello FM, Wu TT. Frequent beta-catenin mutations in juvenile nasopharyngeal angiofibromas. Am J Pathol. 2001;158:1073–8.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Guertl B, Beham A, Zechner R, Stammberger H, Hoefler G. Nasopharyngeal angiofibroma: an APC-gene-associated tumor? Hum Pathol. 2000;31:1411–3.CrossRefPubMedGoogle Scholar
  11. 11.
    Rippel C, Plinkert PK, Schick B. Expression of members of the cadherin-/catenin-protein family in juvenile angiofibromas. Laryngorhinootologie. 2003;82:353–7. German.CrossRefPubMedGoogle Scholar
  12. 12.
    Zhang PJ, Weber R, Liang HH, Pasha TL, LiVolsi VA. Growth factors and receptors in juvenile nasopharyngeal angiofibroma and nasal polyps: an immunohistochemical study. Arch Pathol Lab Med. 2003;127:1480–4.PubMedGoogle Scholar
  13. 13.
    Polakis P. Wnt signaling and cancer. Genes Dev. 2000;14:1837–51.PubMedGoogle Scholar
  14. 14.
    Huang SM, Mishina YM, Liu S, Cheung A, Stegmeier F, Michaud GA, et al. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature. 2009;461:614–20.CrossRefPubMedGoogle Scholar
  15. 15.
    Andrews JC, Fisch U, Valavanis A, Aeppli U, Makek MS. The surgical management of extensive nasopharyngeal angio¬fibromas with the infratemporal fossa approach. Laryngoscope. 1989;99:429–37.CrossRefPubMedGoogle Scholar
  16. 16.
    Wendler O, Schäfer R, Schick B. Mast cells and T-lymphocytes in juvenile angiofibromas. Eur Arch Otorhinolaryngol. 2007;264:769–75. German.CrossRefPubMedGoogle Scholar
  17. 17.
    Schick B, Wemmert S, Bechtel U, Nicolai P, Hofmann T, Golabek W, et al. Comprehensive genomic analysis identifies MDM2 and AURKA as novel amplified genes in juvenile angiofibromas. Head Neck. 2007;29:479–87.CrossRefPubMedGoogle Scholar
  18. 18.
    Kallioniemi OP, Kallioniemi A, Piper J, Isola J, Waldman FM, Gray JW, et al. Optimizing comparative genomic hybridization for analysis of DNA sequence copy number changes in solid tumors. Genes Chromosomes Cancer. 1994;10:231–43.CrossRefPubMedGoogle Scholar
  19. 19.
    Gebhart E, Liehr T. Patterns of genomic imbalances in human solid tumors (Review). Int J Oncol. 2000;16:383–99.PubMedGoogle Scholar
  20. 20.
    Petersen CP, Reddien PW. Wnt signaling and the polarity of the primary body axis. Cell. 2009;139:1056–68.CrossRefPubMedGoogle Scholar
  21. 21.
    Starlinger V, Wendler O, Gramann M, Schick B. Laminin expression in juvenile angiofibroma indicates vessel's early developmental stage. Acta Otolaryngol. 2007;127:1310–5.CrossRefPubMedGoogle Scholar
  22. 22.
    Gramann M, Wendler O, Haeberle L, Schick B. Expression of collagen types I, II and III in juvenile angiofibromas. Cells Tissues Organs. 2009;189:403–9.CrossRefPubMedGoogle Scholar
  23. 23.
    Gramann M, Wendler O, Haeberle L, Schick B. Prominent collagen type VI expression in juvenile angiofibromas. Histochem Cell Biol. 2009;131:155–64.CrossRefPubMedGoogle Scholar
  24. 24.
    Schick B, Wemmert S, Willnecker V, Dlugaiczyk J, Nicolai P, Siwiec H, et al. Genome-wide copy number profiling using a 100K SNP array reveals novel disease-related genes BORIS and TSHZ1 in juvenile angiofibroma. Int J Oncol. 2011;39:1143–51.PubMedGoogle Scholar
  25. 25.
    Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B, et al. Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science. 1997;275:1787–90.CrossRefPubMedGoogle Scholar
  26. 26.
    Sparks AB, Morin PJ, Vogelstein B, Kinzler KW. Mutational analysis of the APC/beta-catenin/Tcf pathway in colorectal cancer. Cancer Res. 1998;58:1130–4.PubMedGoogle Scholar
  27. 27.
    Iwao K, Nakamori S, Kameyama M, Imaoka S, Kinoshita M, Fukui T, et al. Activation of the beta-catenin gene by interstitial deletions involving exon 3 in primary colorectal carcinomas without adenomatous polyposis coli mutations. Cancer Res. 1998;58:1021–6.PubMedGoogle Scholar
  28. 28.
    Miyoshi Y, Iwao K, Nagasawa Y, Aihara T, Sasaki Y, Imaoka S, et al. Activation of the beta-catenin gene in primary hepatocellular carcinomas by somatic alterations involving exon 3. Cancer Res. 1998;58:2524–7.PubMedGoogle Scholar
  29. 29.
    de La Coste A, Romagnolo B, Billuart P, Renard CA, Buendia MA, Soubrane O, et al. Somatic mutations of the beta-catenin gene are frequent in mouse and human hepatocellular carcinomas. Proc Natl Acad Sci U S A. 1998;95:8847–51.CrossRefPubMedCentralGoogle Scholar
  30. 30.
    Murata M, Iwao K, Miyoshi Y, Nagasawa Y, Yabu M, Himeno S, et al. Activation of the beta-catenin gene by interstitial deletions involving exon 3 as an early event in colorectal tumorigenesis. Cancer Lett. 2000;159:73–8.CrossRefPubMedGoogle Scholar
  31. 31.
    Clements WM, Wang J, Sarnaik A, Kim OJ, MacDonald J, Fenoglio-Preiser C, et al. beta-Catenin mutation is a frequent cause of Wnt pathway activation in gastric cancer. Cancer Res. 2002;62(12):3503–6.PubMedGoogle Scholar
  32. 32.
    Ebert MP, Fei G, Kahmann S, Müller O, Yu J, Sung JJ, et al. Increased beta-catenin mRNA levels and mutational alterations of the APC and beta-catenin gene are present in intestinal-type gastric cancer. Carcinogenesis. 2002;23:87–91.CrossRefPubMedGoogle Scholar
  33. 33.
    Ebert MP, Yu J, Hoffmann J, Rocco A, Röcken C, Kahmann S, et al. Loss of beta-catenin expression in metastatic gastric cancer. J Clin Oncol. 2003;21:1708–14.CrossRefPubMedGoogle Scholar
  34. 34.
    Suriano G, Vrcelj N, Senz J, Ferreira P, Masoudi H, Cox K, et al. beta-catenin (CTNNB1) gene amplification: a new mechanism of protein overexpression in cancer. Genes Chromosomes Cancer. 2005;42:238–46.CrossRefPubMedGoogle Scholar
  35. 35.
    Silveira SM, Custódio Domingues MA, Butugan O, Brentani MM, Rogatto SR. Tumor microenvironmental genomic alterations in juvenile nasopharyngeal angiofibroma. Head Neck. 2012;34:485–92.CrossRefPubMedGoogle Scholar
  36. 36.
    Pauli J, Gundelach R, Vanelli-Rees A, Rees G, Campbell C, Dubey S, et al. Juvenile nasopharyngeal angiofibroma: an immunohistochemical characterisation of the stromal cell. Pathology. 2008;40:396–400.CrossRefPubMedGoogle Scholar
  37. 37.
    Hart MJ, De los Santos R, Albert IN, Rubinfeld B, Polakis P. Downregulation of beta-catenin by human Axin and its association with the APC tumor suppressor, beta-catenin and GSK3 beta. Curr Biol. 1998;8:573–81.CrossRefPubMedGoogle Scholar
  38. 38.
    Leung JY, Kolligs FT, Wu R, Zhai Y, Kuick R, Hanash S, et al. Activation of AXIN2 expression by beta-catenin–T cell factor. A feedback repressor pathway regulating Wnt signaling. J Biol Chem. 2002;277:21657–65.CrossRefPubMedGoogle Scholar
  39. 39.
    Behrens J, Jerchow BA, Würtele M, Grimm J, Asbrand C, Wirtz R, et al. Functional interaction of an axin homolog, conductin, with beta-catenin, APC, and GSK3beta. Science. 1998;280:596–9.CrossRefPubMedGoogle Scholar
  40. 40.
    Salahshor S, Woodgett JR. The links between axin and carcinogenesis. J Clin Pathol. 2005;58:225–36.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Liu W, Dong X, Mai M, Seelan RS, Taniguchi K, Krishnadath KK, et al. Mutations in AXIN2 cause colorectal cancer with defective mismatch repair by activating beta catenin/TCF signalling. Nat Genet. 2000;26:146–7.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Silke Wemmert
    • 1
  • Vivienne Willnecker
    • 1
  • Philipp Kulas
    • 1
  • Stefanie Weber
    • 1
  • Cornelia Lerner
    • 1
  • Sabrina Berndt
    • 1
  • Olaf Wendler
    • 2
  • Bernhard Schick
    • 1
  1. 1.Department of OtolaryngologySaarland University Medical CenterHomburg/SaarGermany
  2. 2.Experimental Otorhinolaryngology, ENT-Hospital, Head and Neck SurgeryFriedrich-Alexander University Erlangen-Nürnberg (FAU)ErlangenGermany

Personalised recommendations