Skip to main content

Advertisement

Log in

Identification of CTNNB1 mutations, CTNNB1 amplifications, and an Axin2 splice variant in juvenile angiofibromas

  • Original Article
  • Published:
Tumor Biology

Abstract

Juvenile angiofibromas (JAs) are benign fibro-vascular tumors occurring nearly exclusively in adolescent males. Even less is known about this rare tumor entity, alterations affecting the Wnt-pathway seem to play a pivotal role in tumor biology as activating CTNNB1 mutations have been detected. However, the knowledge of Wnt-pathway changes is still limited. Therefore, we aimed to determine in JAs further insight into Wnt/β-catenin pathway components. In our present study, genetic alterations of the Wnt-pathway members CTNNB1, APC, GSK3β, and Axin2 detected by metaphase comparative genomic hybridization (CGH) were shown to result in elevated transcript levels in the majority of JA samples compared to nasal mucosa stroma (p < 0.001, p = 0.001, p = 0.046, and p = 0.006, respectively). Additionally, amplifications of CTNNB1 were validated by fluorescence in situ hybridization (FISH) and genomic qPCR. Moreover, our mutation analysis detected already known mutations as well as, to the best of our knowledge, mutations and an interstitial deletion of CTNNB1 not described in JAs before. Additionally, a so far unknown transcribed Axin2 splice variant was found, but no further Axin2 mutations. Taken together, our current study supports the importance of aberrant Wnt-signaling as a common event in JAs, most likely by the observed genetic alterations driven by mutations, interstitial deletions but also amplifications of CTNNB1 contributing to the stabilization of β-catenin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. McCombe A, Lund VJ, Howard DJ. Recurrence in juvenile angiofibroma. Rhinology. 1990;28:97–102.

    CAS  PubMed  Google Scholar 

  2. Tewfik TL, Tan AK, al Noury K, Chowdhury K, Tampieri D, Raymond J, et al. Juvenile nasopharyngeal angiofibroma. J Otolaryngol. 1999;28:145–51.

    CAS  PubMed  Google Scholar 

  3. Beham A, Beham-Schmid C, Regauer S, Auböck L, Stammberger H. Nasopharyngeal angiofibroma: true neoplasm or vascular malformation? Adv Anat Pathol. 2000;7:36–46.

    Article  CAS  PubMed  Google Scholar 

  4. Schick B, Urbschat S. New aspects of pathogenesis of juvenile angiofibroma. Hosp Med. 2004;65:269–73.

    Article  PubMed  Google Scholar 

  5. Ferouz AS, Mohr RM, Paul P. Juvenile nasopharyngeal angiofibroma and familial adenomatous polyposis: an association? Otolaryngol Head Neck Surg. 1995;113:435–9.

    Article  CAS  PubMed  Google Scholar 

  6. Giardiello FM, Hamilton SR, Krush AJ, Offerhaus JA, Booker SV, Petersen GM. Nasopharyngeal angiofibroma in patients with familial adenomatous polyposis. Gastroenterology. 1993;105:1550–2.

    Article  CAS  PubMed  Google Scholar 

  7. Kinzler KW, Nilbert MC, Su LK, Vogelstein B, Bryan TM, Levy DB, et al. Identification of FAP locus genes from chromosome 5q21. Science. 1991;253:661–5.

    Article  CAS  PubMed  Google Scholar 

  8. Nishisho I, Nakamura Y, Miyoshi Y, Miki Y, Ando H, Horii A, et al. Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. Science. 1991;253:665–9.

    Article  CAS  PubMed  Google Scholar 

  9. Abraham SC, Montgomery EA, Giardiello FM, Wu TT. Frequent beta-catenin mutations in juvenile nasopharyngeal angiofibromas. Am J Pathol. 2001;158:1073–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Guertl B, Beham A, Zechner R, Stammberger H, Hoefler G. Nasopharyngeal angiofibroma: an APC-gene-associated tumor? Hum Pathol. 2000;31:1411–3.

    Article  CAS  PubMed  Google Scholar 

  11. Rippel C, Plinkert PK, Schick B. Expression of members of the cadherin-/catenin-protein family in juvenile angiofibromas. Laryngorhinootologie. 2003;82:353–7. German.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang PJ, Weber R, Liang HH, Pasha TL, LiVolsi VA. Growth factors and receptors in juvenile nasopharyngeal angiofibroma and nasal polyps: an immunohistochemical study. Arch Pathol Lab Med. 2003;127:1480–4.

    CAS  PubMed  Google Scholar 

  13. Polakis P. Wnt signaling and cancer. Genes Dev. 2000;14:1837–51.

    CAS  PubMed  Google Scholar 

  14. Huang SM, Mishina YM, Liu S, Cheung A, Stegmeier F, Michaud GA, et al. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature. 2009;461:614–20.

    Article  CAS  PubMed  Google Scholar 

  15. Andrews JC, Fisch U, Valavanis A, Aeppli U, Makek MS. The surgical management of extensive nasopharyngeal angio¬fibromas with the infratemporal fossa approach. Laryngoscope. 1989;99:429–37.

    Article  CAS  PubMed  Google Scholar 

  16. Wendler O, Schäfer R, Schick B. Mast cells and T-lymphocytes in juvenile angiofibromas. Eur Arch Otorhinolaryngol. 2007;264:769–75. German.

    Article  PubMed  Google Scholar 

  17. Schick B, Wemmert S, Bechtel U, Nicolai P, Hofmann T, Golabek W, et al. Comprehensive genomic analysis identifies MDM2 and AURKA as novel amplified genes in juvenile angiofibromas. Head Neck. 2007;29:479–87.

    Article  PubMed  Google Scholar 

  18. Kallioniemi OP, Kallioniemi A, Piper J, Isola J, Waldman FM, Gray JW, et al. Optimizing comparative genomic hybridization for analysis of DNA sequence copy number changes in solid tumors. Genes Chromosomes Cancer. 1994;10:231–43.

    Article  CAS  PubMed  Google Scholar 

  19. Gebhart E, Liehr T. Patterns of genomic imbalances in human solid tumors (Review). Int J Oncol. 2000;16:383–99.

    CAS  PubMed  Google Scholar 

  20. Petersen CP, Reddien PW. Wnt signaling and the polarity of the primary body axis. Cell. 2009;139:1056–68.

    Article  CAS  PubMed  Google Scholar 

  21. Starlinger V, Wendler O, Gramann M, Schick B. Laminin expression in juvenile angiofibroma indicates vessel's early developmental stage. Acta Otolaryngol. 2007;127:1310–5.

    Article  CAS  PubMed  Google Scholar 

  22. Gramann M, Wendler O, Haeberle L, Schick B. Expression of collagen types I, II and III in juvenile angiofibromas. Cells Tissues Organs. 2009;189:403–9.

    Article  CAS  PubMed  Google Scholar 

  23. Gramann M, Wendler O, Haeberle L, Schick B. Prominent collagen type VI expression in juvenile angiofibromas. Histochem Cell Biol. 2009;131:155–64.

    Article  CAS  PubMed  Google Scholar 

  24. Schick B, Wemmert S, Willnecker V, Dlugaiczyk J, Nicolai P, Siwiec H, et al. Genome-wide copy number profiling using a 100K SNP array reveals novel disease-related genes BORIS and TSHZ1 in juvenile angiofibroma. Int J Oncol. 2011;39:1143–51.

    CAS  PubMed  Google Scholar 

  25. Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B, et al. Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science. 1997;275:1787–90.

    Article  CAS  PubMed  Google Scholar 

  26. Sparks AB, Morin PJ, Vogelstein B, Kinzler KW. Mutational analysis of the APC/beta-catenin/Tcf pathway in colorectal cancer. Cancer Res. 1998;58:1130–4.

    CAS  PubMed  Google Scholar 

  27. Iwao K, Nakamori S, Kameyama M, Imaoka S, Kinoshita M, Fukui T, et al. Activation of the beta-catenin gene by interstitial deletions involving exon 3 in primary colorectal carcinomas without adenomatous polyposis coli mutations. Cancer Res. 1998;58:1021–6.

    CAS  PubMed  Google Scholar 

  28. Miyoshi Y, Iwao K, Nagasawa Y, Aihara T, Sasaki Y, Imaoka S, et al. Activation of the beta-catenin gene in primary hepatocellular carcinomas by somatic alterations involving exon 3. Cancer Res. 1998;58:2524–7.

    CAS  PubMed  Google Scholar 

  29. de La Coste A, Romagnolo B, Billuart P, Renard CA, Buendia MA, Soubrane O, et al. Somatic mutations of the beta-catenin gene are frequent in mouse and human hepatocellular carcinomas. Proc Natl Acad Sci U S A. 1998;95:8847–51.

    Article  PubMed Central  Google Scholar 

  30. Murata M, Iwao K, Miyoshi Y, Nagasawa Y, Yabu M, Himeno S, et al. Activation of the beta-catenin gene by interstitial deletions involving exon 3 as an early event in colorectal tumorigenesis. Cancer Lett. 2000;159:73–8.

    Article  CAS  PubMed  Google Scholar 

  31. Clements WM, Wang J, Sarnaik A, Kim OJ, MacDonald J, Fenoglio-Preiser C, et al. beta-Catenin mutation is a frequent cause of Wnt pathway activation in gastric cancer. Cancer Res. 2002;62(12):3503–6.

    CAS  PubMed  Google Scholar 

  32. Ebert MP, Fei G, Kahmann S, Müller O, Yu J, Sung JJ, et al. Increased beta-catenin mRNA levels and mutational alterations of the APC and beta-catenin gene are present in intestinal-type gastric cancer. Carcinogenesis. 2002;23:87–91.

    Article  CAS  PubMed  Google Scholar 

  33. Ebert MP, Yu J, Hoffmann J, Rocco A, Röcken C, Kahmann S, et al. Loss of beta-catenin expression in metastatic gastric cancer. J Clin Oncol. 2003;21:1708–14.

    Article  CAS  PubMed  Google Scholar 

  34. Suriano G, Vrcelj N, Senz J, Ferreira P, Masoudi H, Cox K, et al. beta-catenin (CTNNB1) gene amplification: a new mechanism of protein overexpression in cancer. Genes Chromosomes Cancer. 2005;42:238–46.

    Article  CAS  PubMed  Google Scholar 

  35. Silveira SM, Custódio Domingues MA, Butugan O, Brentani MM, Rogatto SR. Tumor microenvironmental genomic alterations in juvenile nasopharyngeal angiofibroma. Head Neck. 2012;34:485–92.

    Article  PubMed  Google Scholar 

  36. Pauli J, Gundelach R, Vanelli-Rees A, Rees G, Campbell C, Dubey S, et al. Juvenile nasopharyngeal angiofibroma: an immunohistochemical characterisation of the stromal cell. Pathology. 2008;40:396–400.

    Article  CAS  PubMed  Google Scholar 

  37. Hart MJ, De los Santos R, Albert IN, Rubinfeld B, Polakis P. Downregulation of beta-catenin by human Axin and its association with the APC tumor suppressor, beta-catenin and GSK3 beta. Curr Biol. 1998;8:573–81.

    Article  CAS  PubMed  Google Scholar 

  38. Leung JY, Kolligs FT, Wu R, Zhai Y, Kuick R, Hanash S, et al. Activation of AXIN2 expression by beta-catenin–T cell factor. A feedback repressor pathway regulating Wnt signaling. J Biol Chem. 2002;277:21657–65.

    Article  CAS  PubMed  Google Scholar 

  39. Behrens J, Jerchow BA, Würtele M, Grimm J, Asbrand C, Wirtz R, et al. Functional interaction of an axin homolog, conductin, with beta-catenin, APC, and GSK3beta. Science. 1998;280:596–9.

    Article  CAS  PubMed  Google Scholar 

  40. Salahshor S, Woodgett JR. The links between axin and carcinogenesis. J Clin Pathol. 2005;58:225–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu W, Dong X, Mai M, Seelan RS, Taniguchi K, Krishnadath KK, et al. Mutations in AXIN2 cause colorectal cancer with defective mismatch repair by activating beta catenin/TCF signalling. Nat Genet. 2000;26:146–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silke Wemmert.

Ethics declarations

Conflicts of interest

None

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wemmert, S., Willnecker, V., Kulas, P. et al. Identification of CTNNB1 mutations, CTNNB1 amplifications, and an Axin2 splice variant in juvenile angiofibromas. Tumor Biol. 37, 5539–5549 (2016). https://doi.org/10.1007/s13277-015-4422-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-4422-y

Keywords

Navigation