Tumor Biology

, Volume 37, Issue 7, pp 9441–9450 | Cite as

Long non-coding RNA tumor suppressor candidate 7 functions as a tumor suppressor and inhibits proliferation in osteosarcoma

Original Article


Osteosarcoma is the most common malignant tumor of bone. Recent studies have proven long non-coding RNAs (lncRNAs) play important roles in the tumorigenesis and progression of cancer. However, few lncRNAs have been investigated in osteosarcoma. Here, we reported a novel lncRNA, tumor suppressor candidate 7 (TUSC7), was significantly downregulated in osteosarcoma tissues compared with paired non-tumor tissues and low expression of TUSC7 indicated poor survival (HR = 0.313, 95 % confidence interval (CI) 0.092–0.867) of osteosarcoma patients. Further analysis revealed that loss copy number of TUSC7 was correlated with low expression of TUSC7, and additionally, loss of TUSC7 copy number also indicated poor prognosis (HR = 3.994, 95 % CI 1.147–13.91) of osteosarcoma patients. Two osteosarcoma cell lines, HOS and MG63, were utilized to investigate biological function of TUSC7. Cell counting kit 8 (CCK-8) assay revealed that after silence of TUSC7, cell proliferation ability increased and the colony formation ability also increased. Further results showed that cell cycle was not affected by treatment of si-TUSC7, while the percentage of apoptotic cells decreased. Western blot showed that after silence of TUSC7, the proapoptotic Bcl2 expression was downregulated. Finally, we established xenograft tumor models in nude mice with MG63 cells. Compared with negative control group, silence of TUSC7 significantly promoted tumor growth in vivo. Thus, we demonstrated that TUSC7 could be a potential tumor suppressor in osteosarcoma.


Osteosarcoma lncRNA TUSC7 Tumor suppressor Apoptosis 



This work has no funding.

Compliance with ethical standards

Conflicts of interest



  1. 1.
    Damron TA, Ward WG, Stewart A. Osteosarcoma, chondrosarcoma, and Ewing’s sarcoma: National Cancer Data Base Report. Clin Orthop Relat Res. 2007;459:40–7. doi: 10.1097/BLO.0b013e318059b8c9.CrossRefPubMedGoogle Scholar
  2. 2.
    Smeland S, Muller C, Alvegard TA, Wiklund T, Wiebe T, Bjork O, et al. Scandinavian Sarcoma Group Osteosarcoma Study SSG VIII: prognostic factors for outcome and the role of replacement salvage chemotherapy for poor histological responders. Eur J Cancer. 2003;39(4):488–94.CrossRefPubMedGoogle Scholar
  3. 3.
    Mialou V, Philip T, Kalifa C, Perol D, Gentet JC, Marec-Berard P, et al. Metastatic osteosarcoma at diagnosis: prognostic factors and long-term outcome—the French pediatric experience. Cancer. 2005;104(5):1100–9. doi: 10.1002/cncr.21263.CrossRefPubMedGoogle Scholar
  4. 4.
    Bielack SS, Carrle D, Hardes J, Schuck A, Paulussen M. Bone tumors in adolescents and young adults. Curr Treat Options Oncol. 2008;9(1):67–80. doi: 10.1007/s11864-008-0057-1.CrossRefPubMedGoogle Scholar
  5. 5.
    Prensner JR, Chinnaiyan AM. The emergence of lncRNAs in cancer biology. Cancer Discov. 2011;1(5):391–407. doi: 10.1158/2159-8290.CD-11-0209.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Gutschner T, Diederichs S. The hallmarks of cancer: a long non-coding RNA point of view. RNA Biol. 2012;9(6):703–19. doi: 10.4161/rna.20481.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature. 2010;464(7291):1071–6. doi: 10.1038/nature08975.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Ji P, Diederichs S, Wang W, Boing S, Metzger R, Schneider PM, et al. MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene. 2003;22(39):8031–41. doi: 10.1038/sj.onc.1206928.CrossRefPubMedGoogle Scholar
  9. 9.
    Yu W, Gius D, Onyango P, Muldoon-Jacobs K, Karp J, Feinberg AP, et al. Epigenetic silencing of tumour suppressor gene p15 by its antisense RNA. Nature. 2008;451(7175):202–6. doi: 10.1038/nature06468.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Dong Y, Liang G, Yuan B, Yang C, Gao R, Zhou X. MALAT1 promotes the proliferation and metastasis of osteosarcoma cells by activating the PI3K/Akt pathway. Tumour Biol. 2015;36(3):1477–86. doi: 10.1007/s13277-014-2631-4.CrossRefPubMedGoogle Scholar
  11. 11.
    Chan LH, Wang W, Yeung W, Deng Y, Yuan P, Mak KK. Hedgehog signaling induces osteosarcoma development through Yap1 and H19 overexpression. Oncogene. 2014;33(40):4857–66. doi: 10.1038/onc.2013.433.CrossRefPubMedGoogle Scholar
  12. 12.
    Wang Y, Yao J, Meng H, Yu Z, Wang Z, Yuan X, et al. A novel long non-coding RNA, hypoxia-inducible factor-2alpha promoter upstream transcript, functions as an inhibitor of osteosarcoma stem cells in vitro. Mol Med Rep. 2015;11(4):2534–40. doi: 10.3892/mmr.2014.3024.PubMedGoogle Scholar
  13. 13.
    Consortium EP, Birney E, Stamatoyannopoulos JA, Dutta A, Guigo R, Gingeras TR, et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature. 2007;447(7146):799–816. doi: 10.1038/nature05874.CrossRefGoogle Scholar
  14. 14.
    Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2011;12(12):861–74. doi: 10.1038/nrg3074.CrossRefPubMedGoogle Scholar
  15. 15.
    Ling H, Vincent K, Pichler M, Fodde R, Berindan-Neagoe I, Slack FJ, et al. Junk DNA and the long non-coding RNA twist in cancer genetics. Oncogene. 2015. doi: 10.1038/onc.2014.456.PubMedCentralGoogle Scholar
  16. 16.
    Hajjari M, Khoshnevisan A, Shin YK. Molecular function and regulation of long non-coding RNAs: paradigms with potential roles in cancer. Tumour Biol. 2014;35(11):10645–63. doi: 10.1007/s13277-014-2636-z.CrossRefPubMedGoogle Scholar
  17. 17.
    Qiu MT, Hu JW, Yin R, Xu L. Long noncoding RNA: an emerging paradigm of cancer research. Tumour Biol. 2013;34(2):613–20. doi: 10.1007/s13277-013-0658-6.CrossRefPubMedGoogle Scholar
  18. 18.
    Huarte M, Guttman M, Feldser D, Garber M, Koziol MJ, Kenzelmann-Broz D, et al. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell. 2010;142(3):409–19. doi: 10.1016/j.cell.2010.06.040.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Arab K, Park YJ, Lindroth AM, Schafer A, Oakes C, Weichenhan D, et al. Long noncoding RNA TARID directs demethylation and activation of the tumor suppressor TCF21 via GADD45A. Mol Cell. 2014;55(4):604–14. doi: 10.1016/j.molcel.2014.06.031.CrossRefPubMedGoogle Scholar
  20. 20.
    Selvarajah S, Yoshimoto M, Ludkovski O, Park PC, Bayani J, Thorner P, et al. Genomic signatures of chromosomal instability and osteosarcoma progression detected by high resolution array CGH and interphase FISH. Cytogenet Genome Res. 2008;122(1):5–15. doi: 10.1159/000151310.CrossRefPubMedGoogle Scholar
  21. 21.
    Squire JA, Pei J, Marrano P, Beheshti B, Bayani J, Lim G, et al. High-resolution mapping of amplifications and deletions in pediatric osteosarcoma by use of CGH analysis of cDNA microarrays. Genes Chromosomes Cancer. 2003;38(3):215–25. doi: 10.1002/gcc.10273.CrossRefPubMedGoogle Scholar
  22. 22.
    Stock C, Kager L, Fink FM, Gadner H, Ambros PF. Chromosomal regions involved in the pathogenesis of osteosarcomas. Genes Chromosomes Cancer. 2000;28(3):329–36.CrossRefPubMedGoogle Scholar
  23. 23.
    Tarkkanen M, Elomaa I, Blomqvist C, Kivioja AH, Kellokumpu-Lehtinen P, Bohling T, et al. DNA sequence copy number increase at 8q: a potential new prognostic marker in high-grade osteosarcoma. Int J Cancer. 1999;84(2):114–21.CrossRefPubMedGoogle Scholar
  24. 24.
    Tarkkanen M, Karhu R, Kallioniemi A, Elomaa I, Kivioja AH, Nevalainen J, et al. Gains and losses of DNA sequences in osteosarcomas by comparative genomic hybridization. Cancer Res. 1995;55(6):1334–8.PubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  • Menglin Cong
    • 1
  • Jianmin Li
    • 2
  • Rui Jing
    • 3
  • Zhenzhong Li
    • 4
  1. 1.Department of Orthopedic SurgeryShandong University School of MedicineJinanChina
  2. 2.Department of Orthopedic SurgeryQilu Hospital of Shandong UniversityJinanChina
  3. 3.Department of Radiologythe General Hospital of Chinese People’s Liberation ArmyBeijingChina
  4. 4.Department of AnatomyShandong University School of MedicineJinanChina

Personalised recommendations