Skip to main content
Log in

Abnormality of Wnt3a expression as novel specific biomarker for diagnosis and differentiation of hepatocellular carcinoma

  • Original Article
  • Published:
Tumor Biology

Abstract

The member 3a of Wingless-type MMTV integration site family (Wnt3a) as an oncogene is overexpressed in many kinds of tumors with a worse outcome. However, the mechanism and alteration of Wnt3a expression in hepatocellular carcinoma (HCC) have not been clarified. In this study, the levels of Wnt3a expression were investigated in 80 HCC tissues or sera of 186 patients with chronic liver diseases. The incidence of hepatic Wnt3a expression in HCC tissues was 96.25 % and significantly higher (χ 2 = 48.818, P < 0.001) than that in their surrounding tissues (46.25 %). The higher level (>800 ng/L) of circulating Wnt3a expression was found in 92.5 % HCC patients and significantly related (P < 0.05) to alpha-fetoprotein (AFP) level, liver cirrhosis, hepatitis B virus infection, poor differentiation, tumor node metastasis, and extra-hepatic metastasis. The level of Wnt3a expression in HCC patients was obviously higher (P < 0.001) than that in any group of cases with benign liver diseases. The diagnostic specificity or the area under the receiver operating characteristic curve was 94.34 % or 0.994 in Wnt3a and 69.81 % or 0.710 in AFP for HCC, respectively. The present data suggested that Wnt3a expression associated with tumor progression should be a novel specific biomarker for diagnosis and differentiation of HCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AFP:

Alpha-fetoprotein

ELISA:

Enzyme-linked immunosorbent assay

HBV:

Hepatitis B virus

HCC:

Hepatocellular carcinoma

HCV:

Hepatitis C virus

IHC:

Immunohistochemistry

ROC:

Receiver operating characteristic curve

TMA:

Tissue microarray

Wnt3a:

Member 3a of Wingless-type MMTV integration site family

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.

    Article  PubMed  Google Scholar 

  2. Bruix J, Gores GJ, Mazzaferro V. Hepatocellular carcinoma: clinical frontiers and perspectives. Gut. 2014;63:844–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. El-Serag HB. Hepatocellular carcinoma. N Engl J Med. 2011;365:1118–27.

    Article  CAS  PubMed  Google Scholar 

  4. Muñoz A, Chen JG, Egner PA, Marshall ML, Johnson JL, Schneider MF, et al. Predictive power of hepatitis B 1762T/1764A mutations in plasma for hepato-cellular carcinoma risk in Qidong, China. Carcinogenesis. 2011;32:860–5.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Yao DF, Horie C, Horie T, Shimizu I, Meng XY, Ito S. Virological features of hepatitis C virus infection in patients with liver diseases in the inshore area of the Yangtze River. Tokushima J Exp Med. 1994;41:49–56.

    CAS  PubMed  Google Scholar 

  6. Ming L, Thorgeirsson SS, Gail MH, Lu P, Harris CC, Wang N, et al. Dominant role of hepatitis B virus and cofactor role of aflatoxin in hepatocarcinogenesis in Qidong, China. Hepatology. 2002;36:1214–20.

    Article  CAS  PubMed  Google Scholar 

  7. Maluccio M, Covey A. Recent progress in understanding, diagnosing, and treating hepatocellular carcinoma. CA Cancer J Clin. 2012;62:394–9.

    Article  PubMed  Google Scholar 

  8. Wang L, Yao M, Dong Z, Zhang Y, Yao D. Circulating specific biomarkers in diagnosis of hepatocellular carcinoma and its metastasis monitoring. Tumour Biol. 2014;35:9–20.

    Article  PubMed  Google Scholar 

  9. Li S, Yao D, Wang L, Wu W, Qiu L, Yao M, et al. Expression characteristics of hypoxia-inducible factor-1α and its clinical values in diagnosis and prognosis of hepatocellular carcinoma. Hepat Mon. 2011;11:821–8.

    PubMed  PubMed Central  Google Scholar 

  10. Yao DF, Jiang D, Huang Z, Lu J, Tao Q, Yu Z, et al. Abnormal expression of hepatoma specific gamma-glutamyl transferase and alteration of gamma- glutamyl transferase gene methylation status in patients with hepatocellular carcinoma. Cancer. 2000;88:761–9.

    Article  CAS  PubMed  Google Scholar 

  11. Wu CS, Lee TY, Chou RH, Yen CJ, Huang WC, Wu CY, et al. Development of a highly sensitive glycan microarray for quantifying AFP-L3 for early prediction of hepatitis B virus-related hepatocellular carcinoma. PLoS One. 2014;9:e99959.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Yao M, Yao DF, Bian YZ, Zhang CG, Qiu LW, Wu W, et al. Oncofetal antigen glypican-3 as a promising early diagnostic marker for hepatocellular carcinoma. Hepatobiliary Pancreat Dis Int. 2011;10:289–94.

    Article  CAS  PubMed  Google Scholar 

  13. Yao M, Pan LH, Yao DF. Glypican-3 as a specific biomarker for hepatocellular carcinoma. Hepatobiliary Pancreat Dis Int. 2015;14:122–3.

    Article  PubMed  Google Scholar 

  14. Wen Y, Han J, Chen J, Dong J, Xia Y, Liu J, et al. Plasma miRNAs as early biomarkers for detecting hepatocellular carcinoma. Int J Cancer. 2015;137:1679–90.

    Article  CAS  PubMed  Google Scholar 

  15. Rogacki K, Kasprzak A, Stepinski A. Alterations of Wnt/beta-catenin signaling pathway in hepatocellular carcinomas associated with hepatitis C virus. Pol J Pathol. 2015;66:9–21.

    Article  PubMed  Google Scholar 

  16. Pez F, Lopez A, Kim M, Wands JR, Caron de Fromentel C, Merle P. Wnt signaling and hepatocarcinogenesis: molecular targets for the development of innovative anticancer drugs. J Hepatol. 2013;59:1107–17.

    Article  CAS  PubMed  Google Scholar 

  17. Gao C, Xiao G, Hu J. Regulation of Wnt/beta-catenin signaling by post- translational modifications. Cell Biosci. 2014;4:13.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Willert K, Nusse R. Wnt proteins. Cold Spring Harb Perspect Biol. 2012;4:a007864.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lamb R, Ablett MP, Spence K, Landberg G, Sims AH, Clarke RB. Wnt pathway activity in breast cancer sub-types and stem-like cells. PLoS One. 2013;8:e67811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Neth P, Ciccarella M, Egea V, Hoelters J, Jochum M, Ries C. Wnt signaling regulates the invasion capacity of human mesenchymal stem cells. Stem Cells. 2006;24:1892–903.

    Article  CAS  PubMed  Google Scholar 

  21. Fox SA, Richards AK, Kusumah I, Perumal V, Bolitho EM, Mutsaers SE, et al. Expression profile and function of Wnt signaling mechanisms in malignant mesothelioma cells. Biochem Biophys Res Commun. 2013;440:82–7.

    Article  CAS  PubMed  Google Scholar 

  22. Kaur N, Chettiar S, Rathod S, Rath P, Muzumdar D, Shaikh ML, et al. Wnt3a mediated activation of Wnt/beta-catenin signaling promotes tumor progression in glioblastoma. Mol Cell Neurosci. 2013;54:44–57.

    Article  CAS  PubMed  Google Scholar 

  23. Verras M, Brown J, Li X, Nusse R, Sun Z. Wnt3a growth factor induces androgen receptor-mediated transcription and enhances cell growth in human prostate cancer cells. Cancer Res. 2004;64:8860–6.

    Article  CAS  PubMed  Google Scholar 

  24. Ministry of Health of the People’s Republic of China. Updated standards for the diagnosis and treatment of primary liver cancer. Zhonghua Gan Zang Bing Za Zhi. 2012;20:419–26.

    Google Scholar 

  25. OY. Management of clinical diagnosis, and antiviral therapy for HBV-related cirrhosis. Zhonghua Gan Zang Bing Za Zhi. 2014;22:327–35.

    Google Scholar 

  26. Gao Q, Qiu SJ, Fan J, Zhou J, Wang XY, Xiao YS, et al. Intratumoral balance of regulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma after resection. J Clin Oncol. 2007;25:2586–93.

    Article  PubMed  Google Scholar 

  27. Zhang Y, Zhang S, Wang X, Liu J, Yang L, He S, et al. Prognostic significance of FOXP1 as an oncogene in hepatocellular carcinoma. J Clin Pathol. 2012;65:528–33.

    Article  PubMed  Google Scholar 

  28. Qian J, Yao D, Dong Z, Wu W, Qiu L, Yao N, et al. Characteristics of hepatic igf-ii expression and monitored levels of circulating igf-ii mRNA in metastasis of hepatocellular carcinoma. Am J Clin Pathol. 2010;134:799–806.

    Article  CAS  PubMed  Google Scholar 

  29. Wei Y, Shen N, Wang Z, Yang G, Yi B, Yang N, et al. Sorafenib sensitizes hepatocellular carcinoma cell to cisplatin via suppression of Wnt/β-catenin signaling. Mol Cell Biochem. 2013;381:139–44.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang Q, Bai X, Chen W, Ma T, Hu Q, Liang C, et al. Wnt/β-catenin signaling enhances hypoxia-induced epithelial-mesenchymal transition in hepatocellular carcinoma via crosstalk with hif-1α signaling. Carcinogenesis. 2013;34:962–73.

    Article  PubMed  Google Scholar 

  31. Nalesso G, Sherwood J, Bertrand J, Pap T, Ramachandran M, De Bari C, et al. WNT-3A modulates articular chondrocyte phenotype by activating both canonical and noncanonical pathways. J Cell Biol. 2011;193:551–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lai JP, Oseini AM, Moser CD, Yu C, Elsawa SF, Hu C, et al. The oncogenic effect of sulfatase 2 in human hepatocellular carcinoma is mediated in part by glypican 3-dependent Wnt activation. Hepatology. 2010;52:1680–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yang T, Cai SY, Zhang J, Lu JH, Lin C, Zhai J, et al. Krüppel-like factor 8 is a new Wnt/beta-catenin signaling target gene and regulator in hepatocellular carcinoma. PLoS One. 2012;7:e39668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu J, Ding X, Tang J, Cao Y, Hu P, Zhou F, et al. Enhancement of canonical Wnt/β-catenin signaling activity by HCV core protein promotes cell growth of hepatocellular carcinoma cells. PLoS One. 2011;6:e27496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu J, Wang Z, Tang J, Tang R, Shan X, Zhang W, et al. Hepatitis C virus core protein activates Wnt/β-catenin signaling through multiple regulation of upstream molecules in the SMMC-7721 cell line. Arch Virol. 2011;156:1013–23.

    Article  CAS  PubMed  Google Scholar 

  36. Hv T, Bock CT, Velavan TP. Genetic insights on host and hepatitis B virus in liver diseases. Mutat Res Rev Mutat Res. 2014;762:65–75.

    Article  Google Scholar 

  37. Zhang XD, Wang Y, Ye LH. Hepatitis B virus X protein accelerates the development of hepatoma. Cancer Biol Med. 2014;11:182–90.

    PubMed  PubMed Central  Google Scholar 

  38. Suarez MI, Uribe D, Jaramillo CM, Osorio G, Perez JC, Lopez R, et al. Wnt/beta- catenin signaling pathway in hepatocellular carcinomas cases from Colombia. Ann Hepatol. 2015;14:64–74.

    PubMed  Google Scholar 

  39. Yao M, Wang L, Yao Y, Gu HB, Yao DF. Biomarker-based microRNA therapeutic strategies for hepatocellular carcinoma. J Clin Transl Hepatol. 2014;2:253–8.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Grants from the National Natural Science Foundation (81200634), the Projects of Medical Science (2014-YY-028, H201102, BL2012053, PADA, and Qinglan Program), Jiangsu Province and the International S.&T. Cooperation Program (2013DFA32150) of China, and we thank T. FitzGibbon, M.D. for the comments on earlier drafts of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dengfu Yao.

Ethics declarations

Conflicts of interest

None

Additional information

Liuhong Pan and Min Yao contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, L., Yao, M., Zheng, W. et al. Abnormality of Wnt3a expression as novel specific biomarker for diagnosis and differentiation of hepatocellular carcinoma. Tumor Biol. 37, 5561–5568 (2016). https://doi.org/10.1007/s13277-015-4413-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-4413-z

Keywords

Navigation