Advertisement

Tumor Biology

, Volume 37, Issue 1, pp 141–150 | Cite as

Estrogen potentiates reactive oxygen species (ROS) tolerance to initiate carcinogenesis and promote cancer malignant transformation

  • Hui Tian
  • Zhen Gao
  • Gang Wang
  • Huizhong Li
  • JunNian Zheng
Review

Abstract

Estrogen-mediated high reactive oxygen species (ROS) tolerance plays an important role in driving carcinogenesis. ROS overproduction acts as the significant effector to increase genomic instability and transduce redox-related signal pathway. Especially, estrogen-mediated mitochondrial ROS promote the mutations in mitochondrial DNA (mtDNA) and the damage to mitochondrial proteins. Moreover, estrogen-mediated ROS contribute to the alteration of energy metabolism and modulate several redox-sensitive proteins responsible for cell proliferation and anti-apoptosis. On the other hand, estrogen simultaneously performs the antioxidative beneficial functions, which protects cancer cells from the potential cytotoxic effects of estrogen-mediated ROS through activation of nuclear factor-erythroid-2-related factor 2 (Nrf2)/Kelch-like ECH-associated protein 1 (Keap1) antioxidant response. Consequently, estrogen potentiates the high ROS tolerance through increase of ROS production as well as acceleration of ROS elimination, which ultimately results in estrogen-mediated carcinogenesis and malignant transformation. However, this overdependence on antioxidant response system to resist ROS-mediated cytotoxicity also represents the “Achilles’ Heel” of estrogen-mediated cancer cells. In other words, the destruction of the high ROS tolerance using antioxidant inhibitors may provide a novel and efficacious measure to selectively eliminate these cancer cells without harming normal cells. Of course, it will be necessary to define the exact situation of ROS homeostasis in the different cellular microenvironment and further decipher the mechanisms of redox regulation, which is consequently used as a new avenue to optimize the clinical therapy for estrogen-mediated cancer.

Keywords

Estrogen Reactive oxygen species (ROS) ROS tolerance Antioxidant response 

Notes

Acknowledgments

This project was supported by the National Natural Science Foundation of China (Nos. 81202144; 81202015; 81400055). Science and Technology Department of Jiangsu province natural fund youth project (No: BK20140242)

Compliance with ethical standards

Conflicts of interest

None

References

  1. 1.
    Barber DA, Harris SR. Oxygen free radicals and antioxidants: a review. Am Pharm. 1994;NS34:26–35.CrossRefPubMedGoogle Scholar
  2. 2.
    Betteridge DJ. What is oxidative stress? Metab Clin Exp. 2000;49:3–8.CrossRefPubMedGoogle Scholar
  3. 3.
    Lambeth JD. Nox enzymes and the biology of reactive oxygen. Nat Rev Immunol. 2004;4:181–9.CrossRefPubMedGoogle Scholar
  4. 4.
    Wallace DC. Mitochondria and cancer. Nat Rev Cancer. 2012;12:685–98.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Weinberg F, Chandel NS. Reactive oxygen species-dependent signaling regulates cancer. Cell Mol Life Sci. 2009;66:3663–73.CrossRefPubMedGoogle Scholar
  6. 6.
    Weinberg F, Hamanaka R, Wheaton WW, Weinberg S, Joseph J, Lopez M, et al. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci U S A. 2010;107:8788–93.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Ma Q, Cavallin LE, Yan B, Zhu S, Duran EM, Wang H, et al. Antitumorigenesis of antioxidants in a transgenic Rac1 model of Kaposi’s sarcoma. Proc Natl Acad Sci U S A. 2009;106:8683–8.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Xia C, Meng Q, Liu LZ, Rojanasakul Y, Wang XR, Jiang BH. Reactive oxygen species regulate angiogenesis and tumor growth through vascular endothelial growth factor. Cancer Res. 2007;67:10823–30.CrossRefPubMedGoogle Scholar
  9. 9.
    Chiang AC, Massague J. Molecular basis of metastasis. N Engl J Med. 2008;359:2814–23.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Gort EH, Groot AJ, van der Wall E, van Diest PJ, Vooijs MA. Hypoxic regulation of metastasis via hypoxia-inducible factors. Curr Mol Med. 2008;8:60–7.CrossRefPubMedGoogle Scholar
  11. 11.
    Radisky DC, Levy DD, Littlepage LE, Liu H, Nelson CM, Fata JE, et al. Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature. 2005;436:123–7.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Binker MG, Binker-Cosen AA, Richards D, Oliver B, Cosen-Binker LI. Egf promotes invasion by PANC-1 cells through Rac1/ROS-dependent secretion and activation of MMP-2. Biochem Biophys Res Commun. 2009;379:445–50.CrossRefPubMedGoogle Scholar
  13. 13.
    Seo JM, Park S, Kim JH. Leukotriene B4 receptor-2 promotes invasiveness and metastasis of ovarian cancer cells through signal transducer and activator of transcription 3 (STAT3)-dependent up-regulation of matrix metalloproteinase 2. J Biol Chem. 2012;287:13840–9.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Saitoh M, Nishitoh H, Fujii M, Takeda K, Tobiume K, Sawada Y, et al. Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J. 1998;17:2596–606.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Ichijo H, Nishida E, Irie K, ten Dijke P, Saitoh M, Moriguchi T, et al. Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science. 1997;275:90–4.CrossRefPubMedGoogle Scholar
  16. 16.
    Ambrosino C, Nebreda AR. Cell cycle regulation by p38 map kinases. Biol Cell. 2001;93:47–51.CrossRefPubMedGoogle Scholar
  17. 17.
    Cheskis BJ, Greger JG, Nagpal S, Freedman LP. Signaling by estrogens. J Cell Physiol. 2007;213:610–7.CrossRefPubMedGoogle Scholar
  18. 18.
    Stice JP, Knowlton AA. Estrogen, NFkappaB, and the heat shock response. Mol Med. 2008;14:517–27.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Saville B, Wormke M, Wang F, Nguyen T, Enmark E, Kuiper G, et al. Ligand-, cell-, and estrogen receptor subtype (alpha/beta)-dependent activation at GC-rich (Sp1) promoter elements. J Biol Chem. 2000;275:5379–87.CrossRefPubMedGoogle Scholar
  20. 20.
    Kushner PJ, Agard DA, Greene GL, Scanlan TS, Shiau AK, Uht RM, et al. Estrogen receptor pathways to AP-1. J Steroid Biochem Mol Biol. 2000;74:311–7.CrossRefPubMedGoogle Scholar
  21. 21.
    Simpson ER. Sources of estrogen and their importance. J Steroid Biochem Mol Biol. 2003;86:225–30.CrossRefPubMedGoogle Scholar
  22. 22.
    Weinstein-Oppenheimer CR, Burrows C, Steelman LS, McCubrey JA. The effects of beta-estradiol on Raf activity, cell cycle progression and growth factor synthesis in the MCF-7 breast cancer cell line. Cancer Biol Ther. 2002;1:256–62.CrossRefPubMedGoogle Scholar
  23. 23.
    Thomson M. Evidence of undiscovered cell regulatory mechanisms: phosphoproteins and protein kinases in mitochondria. Cell Mol Life Sci. 2002;59:213–9.CrossRefPubMedGoogle Scholar
  24. 24.
    Wisdom R. AP-1: one switch for many signals. Exp Cell Res. 1999;253:180–5.CrossRefPubMedGoogle Scholar
  25. 25.
    Li WC, Wang GM, Wang RR, Spector A. The redox active components H2O2 and N-acetyl-L-cysteine regulate expression of c-jun and c-fos in lens systems. Exp Eye Res. 1994;59:179–90.CrossRefPubMedGoogle Scholar
  26. 26.
    Stauffer F, Holzer P, Garcia-Echeverria C. Blocking the PI3K/PKB pathway in tumor cells. Curr Med Chem Anticancer Agents. 2005;5:449–62.CrossRefPubMedGoogle Scholar
  27. 27.
    Barnett SF, Bilodeau MT, Lindsley CW. The Akt/PKB family of protein kinases: a review of small molecule inhibitors and progress towards target validation. Curr Top Med Chem. 2005;5:109–25.CrossRefPubMedGoogle Scholar
  28. 28.
    Okoh VO, Felty Q, Parkash J, Poppiti R, Roy D. Reactive oxygen species via redox signaling to PI3K/AKT pathway contribute to the malignant growth of 4-hydroxy estradiol-transformed mammary epithelial cells. PLoS One. 2013;8, e54206.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Okoh VO, Garba NA, Penney RB, Das J, Deoraj A, Singh KP, et al. Redox signalling to nuclear regulatory proteins by reactive oxygen species contributes to oestrogen-induced growth of breast cancer cells. Br J Cancer. 2015;112:1687–702.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Benhar M, Engelberg D, Levitzki A. ROS, stress-activated kinases and stress signaling in cancer. EMBO Rep. 2002;3:420–5.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Nuedling S, Karas RH, Mendelsohn ME, Katzenellenbogen JA, Katzenellenbogen BS, Meyer R, et al. Activation of estrogen receptor beta is a prerequisite for estrogen-dependent upregulation of nitric oxide synthases in neonatal rat cardiac myocytes. FEBS Lett. 2001;502:103–8.CrossRefPubMedGoogle Scholar
  32. 32.
    Hayashi T, Yamada K, Esaki T, Kuzuya M, Satake S, Ishikawa T, et al. Estrogen increases endothelial nitric oxide by a receptor-mediated system. Biochem Biophys Res Commun. 1995;214:847–55.CrossRefPubMedGoogle Scholar
  33. 33.
    Kampoli AM, Tousoulis D, Tentolouris C, Stefanadis C. Novel agents targeting nitric oxide. Curr Vasc Pharmacol. 2012;10:61–76.CrossRefPubMedGoogle Scholar
  34. 34.
    Nevzati E, Shafighi M, Bakhtian KD, Treiber H, Fandino J, Fathi AR. Estrogen induces nitric oxide production via nitric oxide synthase activation in endothelial cells. Acta Neurochir Suppl. 2015;120:141–5.PubMedGoogle Scholar
  35. 35.
    Chen Z, Yuhanna IS, Galcheva-Gargova Z, Karas RH, Mendelsohn ME, Shaul PW. Estrogen receptor alpha mediates the nongenomic activation of endothelial nitric oxide synthase by estrogen. J Clin Invest. 1999;103:401–6.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Haynes MP, Sinha D, Russell KS, Collinge M, Fulton D, Morales-Ruiz M, et al. Membrane estrogen receptor engagement activates endothelial nitric oxide synthase via the PI3-kinase-Akt pathway in human endothelial cells. Circ Res. 2000;87:677–82.CrossRefPubMedGoogle Scholar
  37. 37.
    Husbeck B, Powis G. The redox protein thioredoxin-1 regulates the constitutive and inducible expression of the estrogen metabolizing cytochromes P450 1B1 and 1A1 in MCF-7 human breast cancer cells. Carcinogenesis. 2002;23:1625–30.CrossRefPubMedGoogle Scholar
  38. 38.
    Park SH, Lee JH, Berek JS, Hu MC. Auranofin displays anticancer activity against ovarian cancer cells through FOXO3 activation independent of p53. Int J Oncol. 2014;45:1691–8.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Green DR, Reed JC. Mitochondria and apoptosis. Science. 1998;281:1309–12.CrossRefPubMedGoogle Scholar
  40. 40.
    Bossy-Wetzel E, Green DR. Apoptosis: checkpoint at the mitochondrial frontier. Mutat Res. 1999;434:243–51.CrossRefPubMedGoogle Scholar
  41. 41.
    O’Lone R, Frith MC, Karlsson EK, Hansen U. Genomic targets of nuclear estrogen receptors. Mol Endocrinol. 2004;18:1859–75.CrossRefPubMedGoogle Scholar
  42. 42.
    Arnold S, Victor MB, Beyer C. Estrogen and the regulation of mitochondrial structure and function in the brain. J Steroid Biochem Mol Biol. 2012;131:2–9.CrossRefPubMedGoogle Scholar
  43. 43.
    Rettberg JR, Yao J, Brinton RD. Estrogen: a master regulator of bioenergetic systems in the brain and body. Front Neuroendocrinol. 2014;35:8–30.CrossRefPubMedGoogle Scholar
  44. 44.
    Chen JQ, Delannoy M, Cooke C, Yager JD. Mitochondrial localization of ERalpha and ERbeta in human MCF7 cells. Am J Physiol Endocrinol Metab. 2004;286:E1011–22.CrossRefPubMedGoogle Scholar
  45. 45.
    Chen JQ, Eshete M, Alworth WL, Yager JD. Binding of MCF-7 cell mitochondrial proteins and recombinant human estrogen receptors alpha and beta to human mitochondrial DNA estrogen response elements. J Cell Biochem. 2004;93:358–73.CrossRefPubMedGoogle Scholar
  46. 46.
    Chen JQ, Yager JD, Russo J. Regulation of mitochondrial respiratory chain structure and function by estrogens/estrogen receptors and potential physiological/pathophysiological implications. Biochim Biophys Acta. 2005;1746:1–17.CrossRefPubMedGoogle Scholar
  47. 47.
    Chen J, Delannoy M, Odwin S, He P, Trush MA, Yager JD. Enhanced mitochondrial gene transcript, ATP, Bcl-2 protein levels, and altered glutathione distribution in ethinyl estradiol-treated cultured female rat hepatocytes. Toxicol Sci. 2003;75:271–8.CrossRefPubMedGoogle Scholar
  48. 48.
    Chen J, Gokhale M, Li Y, Trush MA, Yager JD. Enhanced levels of several mitochondrial mRNA transcripts and mitochondrial superoxide production during ethinyl estradiol-induced hepatocarcinogenesis and after estrogen treatment of HepG2 cells. Carcinogenesis. 1998;19:2187–93.CrossRefPubMedGoogle Scholar
  49. 49.
    Chen J, Schwartz DA, Young TA, Norris JS, Yager JD. Identification of genes whose expression is altered during mitosuppression in livers of ethinyl estradiol-treated female rats. Carcinogenesis. 1996;17:2783–6.CrossRefPubMedGoogle Scholar
  50. 50.
    Hao M, Li Y, Lin W, Xu Q, Shao N, Zhang Y, et al. Estrogen prevents high-glucose-induced damage of retinal ganglion cells via mitochondrial pathway. Graefes Arch Clin Exp Ophthalmol = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie. 2015;253:83–90.CrossRefPubMedGoogle Scholar
  51. 51.
    Doan VD, Gagnon S, Joseph V. Prenatal blockade of estradiol synthesis impairs respiratory and metabolic responses to hypoxia in newborn and adult rats. Am J Physiol Regul Integr Comp Physiol. 2004;287:R612–8.CrossRefPubMedGoogle Scholar
  52. 52.
    Richard SM, Bailliet G, Paez GL, Bianchi MS, Peltomaki P, Bianchi NO. Nuclear and mitochondrial genome instability in human breast cancer. Cancer Res. 2000;60:4231–7.PubMedGoogle Scholar
  53. 53.
    Bianchi NO, Bianchi MS, Richard SM. Mitochondrial genome instability in human cancers. Mutat Res. 2001;488:9–23.CrossRefPubMedGoogle Scholar
  54. 54.
    Ishikawa K, Takenaga K, Akimoto M, Koshikawa N, Yamaguchi A, Imanishi H, et al. ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science. 2008;320:661–4.CrossRefPubMedGoogle Scholar
  55. 55.
    Parrella P, Xiao Y, Fliss M, Sanchez-Cespedes M, Mazzarelli P, Rinaldi M, et al. Detection of mitochondrial DNA mutations in primary breast cancer and fine-needle aspirates. Cancer Res. 2001;61:7623–6.PubMedGoogle Scholar
  56. 56.
    Tan DJ, Bai RK, Wong LJ. Comprehensive scanning of somatic mitochondrial DNA mutations in breast cancer. Cancer Res. 2002;62:972–6.PubMedGoogle Scholar
  57. 57.
    Malins DC, Haimanot R. Major alterations in the nucleotide structure of DNA in cancer of the female breast. Cancer Res. 1991;51:5430–2.PubMedGoogle Scholar
  58. 58.
    Musarrat J, Arezina-Wilson J, Wani AA. Prognostic and aetiological relevance of 8-hydroxyguanosine in human breast carcinogenesis. Eur J Cancer. 1996;32A:1209–14.CrossRefPubMedGoogle Scholar
  59. 59.
    Yamamoto T, Hosokawa K, Tamura T, Kanno H, Urabe M, Honjo H. Urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels in women with or without gynecologic cancer. J Obstet Gynaecol Res. 1996;22:359–63.CrossRefPubMedGoogle Scholar
  60. 60.
    Isidoro A, Martinez M, Fernandez PL, Ortega AD, Santamaria G, Chamorro M, et al. Alteration of the bioenergetic phenotype of mitochondria is a hallmark of breast, gastric, lung and oesophageal cancer. Biochem J. 2004;378:17–20.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Isidoro A, Casado E, Redondo A, Acebo P, Espinosa E, Alonso AM, et al. Breast carcinomas fulfill the Warburg hypothesis and provide metabolic markers of cancer prognosis. Carcinogenesis. 2005;26:2095–104.CrossRefPubMedGoogle Scholar
  62. 62.
    Chen EI, Hewel J, Krueger JS, Tiraby C, Weber MR, Kralli A, et al. Adaptation of energy metabolism in breast cancer brain metastases. Cancer Res. 2007;67:1472–86.CrossRefPubMedGoogle Scholar
  63. 63.
    Rivenzon-Segal D, Boldin-Adamsky S, Seger D, Seger R, Degani H. Glycolysis and glucose transporter 1 as markers of response to hormonal therapy in breast cancer. Int J Cancer. 2003;107:177–82.CrossRefPubMedGoogle Scholar
  64. 64.
    Yadav RN. Isocitrate dehydrogenase activity and its regulation by estradiol in tissues of rats of various ages. Cell Biochem Funct. 1988;6:197–202.CrossRefPubMedGoogle Scholar
  65. 65.
    Wallace DC. Mitochondria and cancer: Warburg addressed. Cold Spring Harb Symp Quant Biol. 2005;70:363–74.CrossRefPubMedGoogle Scholar
  66. 66.
    Li L, Lorenzo PS, Bogi K, Blumberg PM, Yuspa SH. Protein kinase Cdelta targets mitochondria, alters mitochondrial membrane potential, and induces apoptosis in normal and neoplastic keratinocytes when overexpressed by an adenoviral vector. Mol Cell Biol. 1999;19:8547–58.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Baines CP, Song CX, Zheng YT, Wang GW, Zhang J, Wang OL, et al. Protein kinase Cepsilon interacts with and inhibits the permeability transition pore in cardiac mitochondria. Circ Res. 2003;92:873–80.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Lee YR, Park J, Yu HN, Kim JS, Youn HJ, Jung SH. Up-regulation of PI3K/Akt signaling by 17beta-estradiol through activation of estrogen receptor-alpha, but not estrogen receptor-beta, and stimulates cell growth in breast cancer cells. Biochem Biophys Res Commun. 2005;336:1221–6.CrossRefPubMedGoogle Scholar
  69. 69.
    Whitmarsh AJ, Davis RJ. Transcription factor AP-1 regulation by mitogen-activated protein kinase signal transduction pathways. J Mol Med (Berl). 1996;74:589–607.CrossRefGoogle Scholar
  70. 70.
    Felty Q, Xiong WC, Sun D, Sarkar S, Singh KP, Parkash J, et al. Estrogen-induced mitochondrial reactive oxygen species as signal-transducing messengers. Biochemistry. 2005;44:6900–9.CrossRefPubMedGoogle Scholar
  71. 71.
    Liu H, Pedram A, Kim JK. Oestrogen prevents cardiomyocyte apoptosis by suppressing p38alpha-mediated activation of p53 and by down-regulating p53 inhibition on p38beta. Cardiovasc Res. 2011;89:119–28.CrossRefPubMedGoogle Scholar
  72. 72.
    Melov S, Coskun P, Patel M, Tuinstra R, Cottrell B, Jun AS, et al. Mitochondrial disease in superoxide dismutase 2 mutant mice. Proc Natl Acad Sci U S A. 1999;96:846–51.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Slanger TE, Chang-Claude J, Wang-Gohrke S. Manganese superoxide dismutase Ala-9Val polymorphism, environmental modifiers, and risk of breast cancer in a German population. Cancer Causes Control. 2006;17:1025–31.CrossRefPubMedGoogle Scholar
  74. 74.
    Liu H, Yanamandala M, Lee TC, Kim JK. Mitochondrial p38beta and manganese superoxide dismutase interaction mediated by estrogen in cardiomyocytes. PLoS One. 2014;9, e85272.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Kobayashi A, Kang MI, Okawa H, Ohtsuji M, Zenke Y, Chiba T, et al. Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol Cell Biol. 2004;24:7130–9.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Kwak MK, Itoh K, Yamamoto M, Kensler TW. Enhanced expression of the transcription factor Nrf2 by cancer chemopreventive agents: role of antioxidant response element-like sequences in the Nrf2 promoter. Mol Cell Biol. 2002;22:2883–92.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Li W, Kong AN. Molecular mechanisms of Nrf2-mediated antioxidant response. Mol Carcinog. 2009;48:91–104.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Gorrini C, Baniasadi PS, Harris IS, Silvester J, Inoue S, Snow B, et al. BRCA1 interacts with Nrf2 to regulate antioxidant signaling and cell survival. J Exp Med. 2013;210:1529–44.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Gorrini C, Gang BP, Bassi C, Wakeham A, Baniasadi SP, Hao Z, et al. Estrogen controls the survival of BRCA1-deficient cells via a PI3K-Nrf2-regulated pathway. Proc Natl Acad Sci U S A. 2014;111:4472–7.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Yao Y, Brodie AM, Davidson NE, Kensler TW, Zhou Q. Inhibition of estrogen signaling activates the Nrf2 pathway in breast cancer. Breast Cancer Res Treat. 2010;124:585–91.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Rushworth SA, Chen XL, Mackman N, Ogborne RM, O’Connell MA. Lipopolysaccharide-induced heme oxygenase-1 expression in human monocytic cells is mediated via Nrf2 and protein kinase c. J Immunol. 2005;175:4408–15.CrossRefPubMedGoogle Scholar
  82. 82.
    Ross D, Siegel D. NAD(p)h:Quinone oxidoreductase 1 (NQO1, DT-diaphorase), functions and pharmacogenetics. Methods Enzymol. 2004;382:115–44.CrossRefPubMedGoogle Scholar
  83. 83.
    Huang LE, Arany Z, Livingston DM, Bunn HF. Activation of hypoxia-inducible transcription factor depends primarily upon redox-sensitive stabilization of its alpha subunit. J Biol Chem. 1996;271:32253–9.CrossRefPubMedGoogle Scholar
  84. 84.
    Maher JM, Aleksunes LM, Dieter MZ, Tanaka Y, Peters JM, Manautou JE, et al. Nrf2- and PPAR alpha-mediated regulation of hepatic Mrp transporters after exposure to perfluorooctanoic acid and perfluorodecanoic acid. Toxicol Sci. 2008;106:319–28.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Ganan-Gomez I, Wei Y, Yang H, Boyano-Adanez MC, Garcia-Manero G. Oncogenic functions of the transcription factor Nrf2. Free Radic Biol Med. 2013;65:750–64.CrossRefPubMedGoogle Scholar
  86. 86.
    Chen CS, Tseng YT, Hsu YY, Lo YC. Nrf2-Keap1 antioxidant defense and cell survival signaling are upregulated by 17beta-estradiol in homocysteine-treated dopaminergic SH-SY5Y cells. Neuroendocrinology. 2013;97:232–41.CrossRefPubMedGoogle Scholar
  87. 87.
    Kang HJ, Hong YB, Kim HJ, Rodriguez OC, Nath RG, Tilli EM, et al. Detoxification: a novel function of BRCA1 in tumor suppression? Toxicological sciences : an official journal of the Society of Toxicology. 2011;122:26–37.CrossRefGoogle Scholar
  88. 88.
    Saha T, Rih JK, Rosen EM. BRCA1 down-regulates cellular levels of reactive oxygen species. FEBS Lett. 2009;583:1535–43.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Bae I, Fan S, Meng Q, Rih JK, Kim HJ, Kang HJ, et al. BRCA1 induces antioxidant gene expression and resistance to oxidative stress. Cancer Res. 2004;64:7893–909.CrossRefPubMedGoogle Scholar
  90. 90.
    Cao L, Xu X, Cao LL, Wang RH, Coumoul X, Kim SS, et al. Absence of full-length BRCA1 sensitizes mice to oxidative stress and carcinogen-induced tumorigenesis in the esophagus and forestomach. Carcinogenesis. 2007;28:1401–7.CrossRefPubMedGoogle Scholar
  91. 91.
    Geismann C, Arlt A, Sebens S, Schafer H. Cytoprotection “gone astray”: Nrf2 and its role in cancer. OncoTargets and therapy. 2014;7:1497–518.PubMedPubMedCentralGoogle Scholar
  92. 92.
    van der Wijst MG, Brown R, Rots MG. Nrf2, the master redox switch: the Achilles’ heel of ovarian cancer? Biochim Biophys Acta. 2014;1846:494–509.PubMedGoogle Scholar
  93. 93.
    Trachootham D, Alexandre J, Huang P. Targeting cancer cells by ros-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov. 2009;8:579–91.CrossRefPubMedGoogle Scholar
  94. 94.
    Lambert JD, Elias RJ. The antioxidant and pro-oxidant activities of green tea polyphenols: a role in cancer prevention. Arch Biochem Biophys. 2010;501:65–72.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Filomeni G, Piccirillo S, Rotilio G, Ciriolo MR. P38(MAPK) and ERK1/2 dictate cell death/survival response to different pro-oxidant stimuli via p53 and Nrf2 in neuroblastoma cells SH-SY5Y. Biochem Pharmacol. 2012;83:1349–57.CrossRefPubMedGoogle Scholar
  96. 96.
    Juvekar A, Burga LN, Hu H, Lunsford EP, Ibrahim YH, Balmana J, et al. Combining a PI3K inhibitor with a PARP inhibitor provides an effective therapy for BRCA1-related breast cancer. Can Dis. 2012;2:1048–63.CrossRefGoogle Scholar
  97. 97.
    Ibrahim YH, Garcia-Garcia C, Serra V, He L, Torres-Lockhart K, Prat A, et al. PI3K inhibition impairs BRCA1/2 expression and sensitizes BRCA-proficient triple-negative breast cancer to PARP inhibition. Can Dis. 2012;2:1036–47.CrossRefGoogle Scholar
  98. 98.
    Nadal-Serrano M, Pons DG, Sastre-Serra J, Blanquer-Rossello Mdel M, Roca P, Oliver J. Genistein modulates oxidative stress in breast cancer cell lines according to ERalpha/ERbeta ratio: effects on mitochondrial functionality, sirtuins, uncoupling protein 2 and antioxidant enzymes. Int J Biochem Cell Biol. 2013;45:2045–51.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Hui Tian
    • 1
  • Zhen Gao
    • 1
  • Gang Wang
    • 1
  • Huizhong Li
    • 1
  • JunNian Zheng
    • 2
  1. 1.Laboratory of Biological Cancer TherapyXuzhou Medical CollegeXuzhouPeople’s Republic of China
  2. 2.Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer InstituteXuzhou Medical CollegeXuzhouChina

Personalised recommendations