Advertisement

Tumor Biology

, Volume 37, Issue 5, pp 5951–5961 | Cite as

Derivate isocorydine inhibits cell proliferation in hepatocellular carcinoma cell lines by inducing G2/M cell cycle arrest and apoptosis

  • Lijuan Chen
  • Hua Tian
  • Meng Li
  • Chao Ge
  • Fangyu Zhao
  • Lixing Zhang
  • Hong Li
  • Junxi Liu
  • Tingpu Wang
  • Ming Yao
  • Jinjun Li
Original Article

Abstract

We have previously demonstrated that isocorydine (ICD) can be served as a potential antitumor agent in hepatocellular carcinoma (HCC). A novel derivate of isocorydine (d-ICD) could significantly improve its anticancer activity in tumors. However, the molecular mechanisms of d-ICD on HCC cells remain to be unclear. In this study, we observed that d-ICD inhibited cell proliferation and induced apoptosis of HCC cells in a concentration-dependent manner. We found d-ICD induced G2/M cycle arrest of HCC cells via DNA damage 45 alpha (GADD45A) and p21 pathway in vitro and in vivo. In d-ICD-treated cells, cell cycle-related proteins cyclin B1 and p-CDC2 were upregulated and p-cyclin B1, CDC2, and E2F1 were inhibited. p21 expression can be reversed by knockdown of GADD45A in d-ICD-treated HCC cells. Enforced expression of CCAAT/enhancer-binding protein β (C/EBPβ) in combination with d-ICD enhanced the p21 expression in HCC cells. Furthermore, the luciferase reporter assay showed that upregulation of GADD45A by C/EBPβ was achieved through the increase of GADD45A promoter activity. These findings indicate that d-ICD inhibits cell proliferation and induces cell cycle arrest through activation of C/EBPβ-GADD45A-p21 pathway in HCC cells. d-ICD might be a promising chemotherapeutic agent for the treatment of HCC.

Keywords

d-ICD Cell cycle GADD45A Hepatocellular carcinoma 

Notes

Acknowledgments

This work was supported in part by grants from the National Key Program for Basic Research of China (973) (2015CB553905), National Natural Science Foundation of China (81272438, 81472726, 81472570, 81372192, 31360603), Key Discipline and Specialty Foundation of Shanghai Municipal Commission of Health and Family Planning, the National KeySci-Tech Special Project of China (2013ZX10002-011), Innovation Program of Shanghai Municipal Education Commission (13ZZ082), and the SKLORG Research foundation (91-13-02, 91-14-09).

Compliance with ethical standards

Conflicts of interest

None

Supplementary material

13277_2015_4362_MOESM1_ESM.doc (820 kb)
ESM 1 (DOC 820 kb)

References

  1. 1.
    Llovet JM, Burroughs A, Bruix J. Hepatocellular carcinoma. Lancet. 2003;362:1907–17.CrossRefPubMedGoogle Scholar
  2. 2.
    Bosch FX, Ribes J, Diaz M, Cleries R. Primary liver cancer: worldwide incidence and trends. Gastroenterology. 2004;127:S5–16.CrossRefPubMedGoogle Scholar
  3. 3.
    Bloom J, Cross FR. Multiple levels of cyclin specificity in cell-cycle control. Nat Rev Mol Cell Biol. 2007;8:149–60.CrossRefPubMedGoogle Scholar
  4. 4.
    Barreto G, Schafer A, Marhold J, Stach D, Swaminathan SK, Handa V, et al. Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature. 2007;445:671–5.CrossRefPubMedGoogle Scholar
  5. 5.
    Notas G, Alexaki VI, Kampa M, Pelekanou V, Charalampopoulos I, Sabour-Alaoui S, et al. April binding to bcma activates a JNK2-FOXO3-GADD45 pathway and induces a G2/M cell growth arrest in liver cells. J Immunol. 2012;189:4748–58.Google Scholar
  6. 6.
    Kim T, Cui R, Jeon YJ, Fadda P, Alder H, Croce CM. MYC-repressed long noncoding RNAs antagonize MYC-induced cell proliferation and cell cycle progression. Oncotarget. 2015;7:18780–9.Google Scholar
  7. 7.
    Vera J, Raatz Y, Wolkenhauer O, Kottek T, Bhattacharya A, Simon JC, et al. Chk1 and Wee1 control genotoxic-stress induced G2-m arrest in melanoma cells. Cell Signal. 2015;27:951–60.CrossRefPubMedGoogle Scholar
  8. 8.
    Henley SA, Dick FA. The retinoblastoma family of proteins and their regulatory functions in the mammalian cell division cycle. Cell Div. 2012;7:10.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Matsuoka K, Iimori M, Niimi S, Tsukihara H, Watanabe S, Kiyonari S, et al. Trifluridine induces p53-dependent sustained G2 phase arrest with its massive misincorporation into DNA and few DNA strand breaks. Mol Cancer Ther. 2015;14:1004–13.CrossRefPubMedGoogle Scholar
  10. 10.
    Sun H, Hou H, Lu P, Zhang L, Zhao F, Ge C, et al. Isocorydine inhibits cell proliferation in hepatocellular carcinoma cell lines by inducing G2/m cell cycle arrest and apoptosis. PLoS One. 2012;7:e36808.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Lu P, Sun H, Zhang L, Hou H, Zhang L, Zhao F, et al. Isocorydine targets the drug-resistant cellular side population through PDCD4-related apoptosis in hepatocellular carcinoma. Mol Med. 2012;18:1136–46.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Zhong M, Liu Y, Liu J, Di D, Xu M, Yang Y, et al. Isocorydine derivatives and their anticancer activities. Molecules. 2014;19:12099–115.CrossRefPubMedGoogle Scholar
  13. 13.
    Yan M, Li H, Zhao F, Zhang L, Ge C, Yao M, et al. Establishment of NOD/SCID mouse models of human hepatocellular carcinoma via subcutaneous transplantation of histologically intact tumor tissue. Chin J Cancer Res. 2013;25:289–98.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Li H, Ge C, Zhao F, Yan M, Hu C, Jia D, et al. Hypoxia-inducible factor 1 alpha-activated angiopoietin-like protein 4 contributes to tumor metastasis via vascular cell adhesion molecule-1/integrin beta1 signaling in human hepatocellular carcinoma. Hepatology. 2011;54:910–9.CrossRefPubMedGoogle Scholar
  15. 15.
    Tian H, Ge C, Li H, Zhao F, Hou H, Chen T, et al. Ribonucleotide reductase m2b inhibits cell migration and spreading by early growth response protein 1-mediated phosphatase and tensin homolog/akt1 pathway in hepatocellular carcinoma. Hepatology. 2014;59:1459–70.CrossRefPubMedGoogle Scholar
  16. 16.
    Liu L, Cao Y, Chen C, Zhang X, McNabola A, Wilkie D, et al. Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res. 2006;66:11851–8.CrossRefPubMedGoogle Scholar
  17. 17.
    Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359:378–90.CrossRefPubMedGoogle Scholar
  18. 18.
    Liu K, Liu S, Zhang W, Ji B, Wang Y, Liu Y. Mir222 regulates sorafenib resistance and enhance tumorigenicity in hepatocellular carcinoma. Int J Oncol. 2014;45:1537–46.PubMedGoogle Scholar
  19. 19.
    Simioni C, Cani A, Martelli AM, Zauli G, Alameen AA, Ultimo S, et al. The novel dual PI3K/mTOR inhibitor NVP-BGT226 displays cytotoxic activity in both normoxic and hypoxic hepatocarcinoma cells. Oncotarget. 2015;6:17147–60.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Sakaue-Sawano A, Kobayashi T, Ohtawa K, Miyawaki A. Drug-induced cell cycle modulation leading to cell-cycle arrest, nuclear mis-segregation, or endoreplication. BMC Cell Biol. 2011;12:2.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Hall M, Peters G. Genetic alterations of cyclins, cyclin-dependent kinases, and Cdk inhibitors in human cancer. Adv Cancer Res. 1996;68:67–108.CrossRefPubMedGoogle Scholar
  22. 22.
    Coqueret O. New roles for p21 and p27 cell-cycle inhibitors: a function for each cell compartment? Trends Cell Biol. 2003;13:65–70.CrossRefPubMedGoogle Scholar
  23. 23.
    Li D, Kang N, Ji J, Zhan Q. BRCA1 regulates transforming growth factor-beta (TGF-beta1) signaling through Gadd45a by enhancing the protein stability of Smad4. Mol Oncol. 2015;9:1655–66.Google Scholar
  24. 24.
    Shi Y, Massague J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell. 2003;113:685–700.CrossRefPubMedGoogle Scholar
  25. 25.
    Kearsey JM, Coates PJ, Prescott AR, Warbrick E, Hall PA. Gadd45 is a nuclear cell cycle regulated protein which interacts with p21Cip1. Oncogene. 1995;11:1675–83.PubMedGoogle Scholar
  26. 26.
    Cretu A, Sha X, Tront J, Hoffman B, Liebermann DA. Stress sensor Gadd45 genes as therapeutic targets in cancer. Cancer Ther. 2009;7:268–76.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Kastan MB, Zhan Q, el Deiry WS, Carrier F, Jacks T, Walsh WV, et al. A mammalian cell cycle checkpoint pathway utilizing p53 and Gadd45 is defective in ataxia-telangiectasia. Cell. 1992;71:587–97.CrossRefPubMedGoogle Scholar
  28. 28.
    Takekawa M, Saito H. A family of stress-inducible Gadd45-like proteins mediate activation of the stress-responsive MTK1/MEKK4 MAPKKK. Cell. 1998;95:521–30.CrossRefPubMedGoogle Scholar
  29. 29.
    Wang XW, Zhan Q, Coursen JD, Khan MA, Kontny HU, Yu L, et al. Gadd45 induction of a G2/m cell cycle checkpoint. Proc Natl Acad Sci U S A. 1999;96:3706–11.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Ma L, Liu J, Liu L, Duan G, Wang Q, Xu Y, et al. Overexpression of the transcription factor MEF2D in hepatocellular carcinoma sustains malignant character by suppressing G2-m transition genes. Cancer Res. 2014;74:1452–62.CrossRefPubMedGoogle Scholar
  31. 31.
    Sun Y, Tang S, Xiao X. The effect of Gadd45a on furazolidone-induced S-phase cell-cycle arrest in human hepatoma G2 cells. J Biochem Mol Toxicol. 2015. doi: 10.1002/jbt.21719.Google Scholar
  32. 32.
    Fornace Jr AJ, Nebert DW, Hollander MC, Luethy JD, Papathanasiou M, Fargnoli J, et al. Mammalian genes coordinately regulated by growth arrest signals and DNA-damaging agents. Mol Cell Biol. 1989;9:4196–203.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Tamura RE, de Vasconcellos JF, Sarkar D, Libermann TA, Fisher PB, Zerbini LF. Gadd45 proteins: central players in tumorigenesis. Curr Mol Med. 2012;12:634–51.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Sun L, Gong R, Wan B, Huang X, Wu C, Zhang X, et al. Gadd45gamma, down-regulated in 65% hepatocellular carcinoma (HCC) from 23 Chinese patients, inhibits cell growth and induces cell cycle G2/m arrest for hepatoma Hep-G2 cell lines. Mol Biol Rep. 2003;30:249–53.CrossRefPubMedGoogle Scholar
  35. 35.
    Zhang L, Yang Z, Ma A, Qu Y, Xia S, Xu D, et al. Growth arrest and DNA damage 45G down-regulation contributes to Janus kinase/signal transducer and activator of transcription 3 activation and cellular senescence evasion in hepatocellular carcinoma. Hepatology. 2014;59:178–89.CrossRefPubMedGoogle Scholar
  36. 36.
    Wang H, Iakova P, Wilde M, Welm A, Goode T, Roesler WJ, et al. C/EBPalpha arrests cell proliferation through direct inhibition of Cdk2 and Cdk4. Mol Cell. 2001;8:817–28.CrossRefPubMedGoogle Scholar
  37. 37.
    Zhu S, Yoon K, Sterneck E, Johnson PF, Smart RC. CCAAT/enhancer binding protein-beta is a mediator of keratinocyte survival and skin tumorigenesis involving oncogenic Ras signaling. Proc Natl Acad Sci U S A. 2002;99:207–12.CrossRefPubMedGoogle Scholar
  38. 38.
    Lane MD, Tang QQ, Jiang MS. Role of the CCAAT enhancer binding proteins (C/EBPS) in adipocyte differentiation. Biochem Biophys Res Commun. 1999;266:677–83.CrossRefPubMedGoogle Scholar
  39. 39.
    Tang QQ, Lane MD. Activation and centromeric localization of CCAAT/enhancer-binding proteins during the mitotic clonal expansion of adipocyte differentiation. Genes Dev. 1999;13:2231–41.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Panka DJ, Wang W, Atkins MB, Mier JW. The Raf inhibitor BAY 43-9006 (sorafenib) induces caspase-independent apoptosis in melanoma cells. Cancer Res. 2006;66:1611–9.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Lijuan Chen
    • 1
    • 2
  • Hua Tian
    • 2
  • Meng Li
    • 1
    • 2
  • Chao Ge
    • 2
  • Fangyu Zhao
    • 2
  • Lixing Zhang
    • 2
  • Hong Li
    • 2
  • Junxi Liu
    • 3
  • Tingpu Wang
    • 4
  • Ming Yao
    • 2
  • Jinjun Li
    • 2
  1. 1.Shanghai Medical CollegeFudan UniversityShanghaiChina
  2. 2.State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji HospitalJiaotong University School of MedicineShanghaiChina
  3. 3.Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory Fornatural Medicine of Gansu Province, Lanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhouChina
  4. 4.College of Life Sciences and ChemistryTianshui Normal UniversityTianshuiChina

Personalised recommendations