Tumor Biology

, Volume 37, Issue 4, pp 5427–5435 | Cite as

Emerging prognostic markers related to mesenchymal characteristics of poorly differentiated breast cancers

  • Manuel Scimeca
  • Chiara Antonacci
  • Daniele Colombo
  • Rita Bonfiglio
  • Oreste Claudio Buonomo
  • Elena Bonanno
Original Article


Despite the screening program, breast cancer is the commonest cause of cancer death in women in the industrialized world. In this study, we investigate the correlation among poorly differentiated carcinoma, epithelial to mesenchymal transition (EMT) phenomenon, and expression of NF-kB, Sonic Hedgehog (SHH), K-RAS, and PTX3 in breast cancer in 100 breast biopsies. Samples were classified as follows: 30 benign lesions (BL), 30 ductal infiltrating carcinomas low grade (MLG1), and 40 ductal infiltrating carcinomas high grade (MLG3). Expression of vimentin, CD44, β-catenin, NF-kB, SHH, K-RAS, CD44, and PTX3 was studied by immunohistochemistry. The different rate of cells with vimentin, nuclear β-catenin, and CD44 expression in MLG3 as compared with MLG1 and BL suggested that the process of de-differentiation of breast cancer cells could be related to the EMT. Our results showed a significant increase in NF-kB signal in MLG3 (2.33 ± 0.77) with respect to MLG1 (1.26 ± 0.55) and BL (0.86 ± 0.52). SHH expression appeared low in BL (1.00 ± 0.41) and homogenously widespread in MLG1 (1.23 ± 0.63) and MLG3 (1.56 ± 0.54). An important increase in K-RAS signal was observed in MLG3 compared to that in BL (2.20 ± 0.69 vs 0.82 ± 0.59). As regards PTX3, we observed a strong expression in MLG3 (2.00 ± 0.78) with respect to BL (0.58 ± 0.55) and MLG1 (1.53 ± 0.76). The recurring expression of NF-kB, SHH, K-RAS, and PTX3 in vimentin- and CD44-positive breast cancer cells allows to speculate that breast cells acquire the ability to express these molecules in concomitance to EMT phenomenon.


Breast cancer markers Epithelial to mesenchymal transition NF-kB PTX3 K-RAS Sonic Hedgehog 



This work has been supported by FILAS Grant FILAS-SO-2011–1076. Authors thank UCS Diagnostic S.r.l. for technical support.

Compliance with ethical standards

Conflicts of interest



  1. 1.
    Youlden DR, Cramb SM, Dunn NA, Muller JM, Pyke CM, Baade PD. The descriptive epidemiology of female breast cancer: an international comparison of screening, incidence, survival and mortality. Cancer Epidemiol. 2012;36(3):237–48.CrossRefPubMedGoogle Scholar
  2. 2.
    Martelotto LG, Ng CK, Piscuoglio S, Weigelt B, Reis-Filho JS. Breast cancer intra-tumor heterogeneity. JS Breast Cancer Res. 2014;16(3):210.CrossRefGoogle Scholar
  3. 3.
    Nowell PC. The clonal evolution of tumor cell populations. Science. 1976;194(4260):23–8.CrossRefPubMedGoogle Scholar
  4. 4.
    Marusyk A, Polyak K. Tumor heterogeneity: causes and consequences. Biochim Biophys Acta. 2010;1805(1):105–17.PubMedGoogle Scholar
  5. 5.
    May CD, Sphyris N, Evans KW, Werden SJ, Guo W, Mani SA. Epithelial-mesenchymal transition and cancer stem cells: a dangerously dynamic duo in breast cancer progression. Breast Cancer Res. 2011;13(1):202.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Savagner P. Leaving the neighborhood: molecular mechanisms involved during epithelial-mesenchymal transition. Bioessays. 2001;23:912–23.CrossRefPubMedGoogle Scholar
  7. 7.
    Thiery J. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139:871–90.CrossRefPubMedGoogle Scholar
  8. 8.
    Hayden MS, Ghosh S. Shared principles in NF-κB signaling. Cell. 2008;132(3):344–62.CrossRefPubMedGoogle Scholar
  9. 9.
    Ingham PW, McMahon AP. Hedgehog signaling in animal development: paradigms and principles. Genes Dev. 2001;15(23):3059–87.CrossRefPubMedGoogle Scholar
  10. 10.
    Jiang J, Hui CC. Hedgehog signaling in development and cancer. Dev Cell. 2008;15(6):801–12. Expression and regulation mechanisms of Sonic Hedgehog in breast cancer. Cui et al. Cancer science. 2010.CrossRefPubMedGoogle Scholar
  11. 11.
    Eser S, Schnieke A, Schneider G, Saur D. Oncogenic KRAS signalling in pancreatic cancer. Br J Cancer. 2014;111(5):817–22.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Gee K, Kryworuchko M, Kumar A. Recent advances in the regulation of CD44 expression and its role in inflammation and autoimmune diseases. Arch Immunol Ther Exp (Warsz). 2004;52(1):13–26.Google Scholar
  13. 13.
    Olsson E, Honeth G, Bendahl PO, et al. CD44 isoforms are heterogeneously expressed in breast cancer and correlate with tumor subtypes and cancer stem cell markers. BMC Cancer. 2011;11:418.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Deban L, Bottazzi B, Garlanda C, de la Torre YM, Mantovani A. Pentraxins: multifunctional proteins at the interface of innate immunity and inflammation. Biofactors. 2009;35(2):138–45.CrossRefPubMedGoogle Scholar
  15. 15.
    Fox CH, Johnson FB, Whiting J, Roller PP. Formaldehyde fixation. J Histochem Cytochem. 1985;33(8):845–53.CrossRefPubMedGoogle Scholar
  16. 16.
    Scimeca M, Orlandi A, Terrenato I, Bischetti S, Bonanno E. Assessment of metal contaminants in non-small cell lung cancer by EDX microanalysis. Eur J Histochem. 2014;58(3):2403.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Di Marco G, Gismondi A, Canuti L, Scimeca M, Volpe A, Canini A. Tetracycline accumulates in Iberis sempervirens L. through apoplastic transport inducing oxidative stress and growth inhibition. Plant Biol (Stuttg). 2014;16(4):792–800.CrossRefGoogle Scholar
  18. 18.
    Reynolds ES. The use of lead citrate at high pH as an electron opaque stain based on metal chelation. J Cell Biol. 1963;17:208–12.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Wolff AC, Hammond ME, Hicks DG, et al. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. Arch Pathol Lab Med. 2014;138(2):241–56.CrossRefPubMedGoogle Scholar
  20. 20.
    Polyak K, Weinberg RA. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer. 2009;9:265–73.CrossRefPubMedGoogle Scholar
  21. 21.
    Scimeca M, Giannini E, Antonacci C, Pistolese CA, Spagnoli LG, Bonanno E. Microcalcifications in breast cancer: an active phenomenon mediated by epithelial cells with mesenchymal characteristics. BMC Cancer. 2014;14:286.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Hollestelle A, Peeters JK, Smid M, et al. Loss of E-cadherin is not a necessity for epithelial to mesenchymal transition in human breast cancer. Breast Cancer Res Treat. 2013;138(1):47–57.CrossRefPubMedGoogle Scholar
  23. 23.
    Jing H, Lee S. NF-κB in cellular senescence and cancer treatment. Mol Cells. 2014;37(3):189–95.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Ukaji T, Umezawa K. Novel approaches to target NF-κB and other signaling pathways in cancer stem cells. Adv Biol Regul. 2014;56:108–15.CrossRefPubMedGoogle Scholar
  25. 25.
    Shyamsunder P, Verma RS, Lyakhovich A. ROMO1 regulates RedOx states and serves as an inducer of NF-κB-driven EMT factors in Fanconi anemia. Cancer Lett. 2015;361(1):33–8.CrossRefPubMedGoogle Scholar
  26. 26.
    Song FN, Duan M, Liu LZ, et al. RANKL promotes migration and invasion of hepatocellular carcinoma cells via NF-κB-mediated epithelial-mesenchymal transition. PLoS ONE. 2014;9(9):e108507.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Gilmore TD, Herscovitch M. Inhibitors of NF-kappaB signaling: 785 and counting. Oncogene. 2006;25(51):6887–99.CrossRefPubMedGoogle Scholar
  28. 28.
    Morton JP, Lewis BC. Shh signaling and pancreatic cancer: implications for therapy? Cell Cycle. 2007;6(13):1553–7.CrossRefPubMedGoogle Scholar
  29. 29.
    Lauth M, Bergström A, Shimokawa T, et al. DYRK1B-dependent autocrine-to-paracrine shift of Hedgehog signaling by mutant RAS. Nat Struct Mol Biol. 2010;17(6):718–25.CrossRefPubMedGoogle Scholar
  30. 30.
    Pasca di Magliano M, Sekine S, Ermilov A, Ferris J, Dlugosz AA, Hebrok M. Hedgehog/Ras interactions regulate early stages of pancreatic cancer. Genes Dev. 2006;20(22):3161–73.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Downward J. Targeting RAS, signalling pathways in cancer therapy. Nat Rev Cancer. 2003;3:11–22.CrossRefPubMedGoogle Scholar
  32. 32.
    Ye N, Zhou J. KRAS—an evolving cancer target. Austin J Cancer Clin Res. 2014;1(1):1004.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Bonavita E, Gentile S, Rubino M, et al. PTX3 is an extrinsic oncosuppressor regulating complement-dependent inflammation in cancer. Cell. 2015;160(4):700–14.CrossRefPubMedGoogle Scholar
  34. 34.
    Lee EJ, Song DH, Kim YJ, et al. PTX3 stimulates osteoclastogenesis by increasing osteoblast RANKL production. J Cell Physiol. 2014;229(11):1744–52.CrossRefPubMedGoogle Scholar
  35. 35.
    Scimeca M, Antonacci C, Bonanno E. Breast Microcalcifications: A Focus. J Cell Sci Ther. 2015 Set S8:e101.Google Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Manuel Scimeca
    • 1
    • 2
  • Chiara Antonacci
    • 1
    • 2
  • Daniele Colombo
    • 1
  • Rita Bonfiglio
    • 1
  • Oreste Claudio Buonomo
    • 3
  • Elena Bonanno
    • 1
    • 2
  1. 1.Anatomic Pathology Section, Department of Biomedicine and PreventionUniversity of Rome “Tor Vergata”RomeItaly
  2. 2.TMALab s.r.l.Spin-off of University of Tor VergataRomeItaly
  3. 3.Department of Experimental Medicine and SurgeryUniversity “Tor Vergata”RomeItaly

Personalised recommendations