Advertisement

Tumor Biology

, Volume 37, Issue 1, pp 97–104 | Cite as

MicroRNAs as biomarkers and prospective therapeutic targets in colon and pancreatic cancers

  • Ganji Purnachandra Nagaraju
  • Appiya Santharam Madanraj
  • Sheik Aliya
  • Balney Rajitha
  • Olatunji Boladale Alese
  • Ekamber Kariali
  • Afroz Alam
  • Bassel F. El-Rayes
Review

Abstract

Colon and pancreatic cancers have high mortality rates due to early metastasis prior to the onset of symptoms. Screening tests for colorectal cancer are invasive and expensive. No effective screening is available for pancreatic cancer. Identification of biomarkers for early detection in both of these cancers is being extensively researched. MicroRNAs (miRNA) are small non-coding molecule biomarkers that regulate cancers. Measurement of miRNAs in pancreatic fluid or blood could be a preferred non-invasive screening method. The regulation of colon and pancreatic cancers by miRNA is complex. miRNA play a central role in inflammation, invasiveness, and tumor progression in these two cancers, as well as regulation of the NF-κB pathway. miRNA’s evolving role in screening is also reviewed.

Keywords

MicroRNA NF-κB Colon cancer Pancreatic cancer 

Notes

Compliance with ethical standards

Conflicts of interest

None

References

  1. 1.
    Doubeni CA, Major JM, Laiyemo AO, Schootman M, Zauber AG, Hollenbeck AR, et al. Contribution of behavioral risk factors and obesity to socioeconomic differences in colorectal cancer incidence. J Natl Cancer Inst. 2012;104:1353–62.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Kaur S, Kumar S, Momi N, Sasson AR, Batra SK. Mucins in pancreatic cancer and its microenvironment. Nat Rev Gastroenterol Hepatol. 2013;10:607–20.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Siegel R, Desantis C, Jemal A. Colorectal cancer statistics, 2014. CA Cancer J Clin. 2014;64:104–17.CrossRefPubMedGoogle Scholar
  4. 4.
    Farraye FA, Odze RD, Eaden J, Itzkowitz SH. AGA technical review on the diagnosis and management of colorectal neoplasia in inflammatory bowel disease. Gastroenterology. 2010;138:746–74. 774.e1-4; quiz e12-3.CrossRefPubMedGoogle Scholar
  5. 5.
    Schetter AJ, Okayama H, Harris CC. The role of microRNAs in colorectal cancer. Cancer J. 2012;18:244–52.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Li X, Tu J, Zhang D, Xu Z, Yang G, Gong L, et al. The clinical significance of HER-2 and NF-KB expression in gastric cancer. Hepatogastroenterology. 2013;60:1519–23.PubMedGoogle Scholar
  7. 7.
    Galardi S, Mercatelli N, Farace MG, Ciafre SA. NF-kB and c-Jun induce the expression of the oncogenic miR-221 and miR-222 in prostate carcinoma and glioblastoma cells. Nucleic Acids Res. 2011;39:3892–902.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Zubair A, Frieri M. Role of nuclear factor-kB in breast and colorectal cancer. Curr Allergy Asthma Rep. 2013;13:44–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Ambros V. microRNAs: tiny regulators with great potential. Cell. 2001;107:823–6.CrossRefPubMedGoogle Scholar
  10. 10.
    Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.CrossRefPubMedGoogle Scholar
  11. 11.
    Zhang B, Pan X, Cobb GP, Anderson TA. microRNAs as oncogenes and tumor suppressors. Dev Biol. 2007;302:1–12.CrossRefPubMedGoogle Scholar
  12. 12.
    Forman JJ, Legesse-Miller A, Coller HA. A search for conserved sequences in coding regions reveals that the let-7 microRNA targets Dicer within its coding sequence. Proc Natl Acad Sci U S A. 2008;105:14879–84.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A. 2004;101:2999–3004.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 2004;23:4051–60.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Borchert GM, Lanier W, Davidson BL. RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol. 2006;13:1097–101.CrossRefPubMedGoogle Scholar
  16. 16.
    Cowland JB, Hother C, Gronbaek K. MicroRNAs and cancer. APMIS. 2007;115:1090–106.CrossRefPubMedGoogle Scholar
  17. 17.
    Kim VN. MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol. 2005;6:376–85.CrossRefPubMedGoogle Scholar
  18. 18.
    Michael MZ, O’Connor SM, van Holst Pellekaan NG, Young GP, James RJ. Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res. 2003;1:882–91.PubMedGoogle Scholar
  19. 19.
    Akao Y, Nakagawa Y, Naoe T. MicroRNAs 143 and 145 are possible common onco-microRNAs in human cancers. Oncol Rep. 2006;16:845–50.PubMedGoogle Scholar
  20. 20.
    Schee K, Boye K, Abrahamsen TW, Fodstad O, Flatmark K. Clinical relevance of microRNA miR-21, miR-31, miR-92a, miR-101, miR-106a and miR-145 in colorectal cancer. BMC Cancer. 2012;12:505. doi: 10.1186/1471-2407-12-505.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Xuan Y, Yang H, Zhao L, Lau WB, Lau B, Ren N, et al. MicroRNAs in colorectal cancer: small molecules with big functions. Cancer Lett. 2015;360:89–105.CrossRefPubMedGoogle Scholar
  22. 22.
    Shen WW, Zeng Z, Zhu WX, Fu GH. MiR-142-3p functions as a tumor suppressor by targeting CD133, ABCG2, and Lgr5 in colon cancer cells. J Mol Med (Berl). 2013;91:989–1000.CrossRefGoogle Scholar
  23. 23.
    Zhou MK, Liu XJ, Zhao ZG, Cheng YM. MicroRNA-100 functions as a tumor suppressor by inhibiting Lgr5 expression in colon cancer cells. Mol Med Rep. 2015;11:2947–52.PubMedGoogle Scholar
  24. 24.
    Yamaguchi T, Iijima T, Wakaume R, Takahashi K, Matsumoto H, Nakano D, et al. Underexpression of miR-126 and miR-20b in hereditary and nonhereditary colorectal tumors. Oncology. 2014;87:58–66.CrossRefPubMedGoogle Scholar
  25. 25.
    Li Z, Li N, Wu M, Li X, Luo Z, Wang X. Expression of miR-126 suppresses migration and invasion of colon cancer cells by targeting CXCR4. Mol Cell Biochem. 2013;381:233–42.CrossRefPubMedGoogle Scholar
  26. 26.
    Zhu J, Chen L, Zou L, Yang P, Wu R, Mao Y, et al. MiR-20b, -21, and -130b inhibit PTEN expression resulting in B7-H1 over-expression in advanced colorectal cancer. Hum Immunol. 2014;75:348–53.CrossRefPubMedGoogle Scholar
  27. 27.
    Chai J, Wang S, Han D, Dong W, Xie C, Guo H. MicroRNA-455 inhibits proliferation and invasion of colorectal cancer by targeting RAF proto-oncogene serine/threonine-protein kinase. Tumour Biol. 2015;36:1313–21.CrossRefPubMedGoogle Scholar
  28. 28.
    Liu X, Duan B, Dong Y, He C, Zhou H, Sheng H, et al. MicroRNA-139-3p indicates a poor prognosis of colon cancer. Int J Clin Exp Pathol. 2014;7:8046–52.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Long LM, He BF, Huang GQ, Guo YH, Liu YS, Huo JR. microRNA-214 functions as a tumor suppressor in human colon cancer via the suppression of ADP-ribosylation factor-like protein 2. Oncol Lett. 2015;9:645–50.PubMedGoogle Scholar
  30. 30.
    Liu K, Zhao H, Yao H, Lei S, Lei Z, Li T, et al. MicroRNA-124 regulates the proliferation of colorectal cancer cells by targeting iASPP. Biomed Res Int. 2013;2013:867537.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Yamada N, Tsujimura N, Kumazaki M, Shinohara H, Taniguchi K, Nakagawa Y, et al. Colorectal cancer cell-derived microvesicles containing microRNA-1246 promote angiogenesis by activating Smad 1/5/8 signaling elicited by PML down-regulation in endothelial cells. Biochim Biophys Acta. 1839;2014:1256–72.Google Scholar
  32. 32.
    He B, Gao SQ, Huang LD, Huang YH, Zhang QY, Zhou MT, et al. MicroRNA-155 promotes the proliferation and invasion abilities of colon cancer cells by targeting quaking. Mol Med Rep. 2015;11:2355–9.PubMedGoogle Scholar
  33. 33.
    Liu H, Du L, Wen Z, Yang Y, Li J, Wang L, et al. Up-regulation of miR-182 expression in colorectal cancer tissues and its prognostic value. Int J Colorectal Dis. 2013;28:697–703.CrossRefPubMedGoogle Scholar
  34. 34.
    Zhang Y, Wang X, Wang Z, Tang H, Fan H, Guo Q. miR-182 promotes cell growth and invasion by targeting forkhead box F2 transcription factor in colorectal cancer. Oncol Rep. 2015;33:2592–8.PubMedGoogle Scholar
  35. 35.
    Zhou T, Zhang G, Liu Z, Xia S, Tian H. Overexpression of miR-92a correlates with tumor metastasis and poor prognosis in patients with colorectal cancer. Int J Colorectal Dis. 2013;28:19–24.CrossRefPubMedGoogle Scholar
  36. 36.
    Zhang G, Zhou H, Xiao H, Liu Z, Tian H, Zhou T. MicroRNA-92a functions as an oncogene in colorectal cancer by targeting PTEN. Dig Dis Sci. 2014;59:98–107.CrossRefPubMedGoogle Scholar
  37. 37.
    Wu J, Ji X, Zhu L, Jiang Q, Wen Z, Xu S, et al. Up-regulation of microRNA-1290 impairs cytokinesis and affects the reprogramming of colon cancer cells. Cancer Lett. 2013;329:155–63.CrossRefPubMedGoogle Scholar
  38. 38.
    McClanahan T, Koseoglu S, Smith K, Grein J, Gustafson E, Black S, et al. Identification of overexpression of orphan G protein-coupled receptor GPR49 in human colon and ovarian primary tumors. Cancer Biol Ther. 2006;5:419–26.CrossRefPubMedGoogle Scholar
  39. 39.
    Xi HQ, Cai AZ, Wu XS, Cui JX, Shen WS, Bian SB, et al. Leucine-rich repeat-containing G-protein-coupled receptor 5 is associated with invasion, metastasis, and could be a potential therapeutic target in human gastric cancer. Br J Cancer. 2014;110:2011–20.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Ryuge S, Sato Y, Jiang SX, Wang G, Kobayashi M, Nagashio R, et al. The clinicopathological significance of Lgr5 expression in lung adenocarcinoma. Lung Cancer. 2013;82:143–8.CrossRefPubMedGoogle Scholar
  41. 41.
    Huang J, Gao K, Lin J, Wang Q. MicroRNA-100 inhibits osteosarcoma cell proliferation by targeting Cyr61. Tumour Biol. 2014;35:1095–100.CrossRefPubMedGoogle Scholar
  42. 42.
    Chen P, Zhao X, Ma L. Downregulation of microRNA-100 correlates with tumor progression and poor prognosis in hepatocellular carcinoma. Mol Cell Biochem. 2013;383:49–58.CrossRefPubMedGoogle Scholar
  43. 43.
    Hutchison J, Cohen Z, Onyeagucha BC, Funk J, Nelson MA. How microRNAs influence both hereditary and inflammatory-mediated colon cancers. Cancer Genet. 2013;206:309–16.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Vogelstein B, Kinzler KW. Cancer genes and the pathways they control. Nat Med. 2004;10:789–99.CrossRefPubMedGoogle Scholar
  45. 45.
    Yamaguchi T, Bando H, Mori T, Takahashi K, Matsumoto H, Yasutome M, et al. Overexpression of soluble vascular endothelial growth factor receptor 1 in colorectal cancer: association with progression and prognosis. Cancer Sci. 2007;98:405–10.CrossRefPubMedGoogle Scholar
  46. 46.
    Ujifuku K, Mitsutake N, Takakura S, Matsuse M, Saenko V, Suzuki K, et al. miR-195, miR-455-3p and miR-10a(*) are implicated in acquired temozolomide resistance in glioblastoma multiforme cells. Cancer Lett. 2010;296:241–8.CrossRefPubMedGoogle Scholar
  47. 47.
    Li X, Zhang G, Luo F, Ruan J, Huang D, Feng D, et al. Identification of aberrantly expressed miRNAs in rectal cancer. Oncol Rep. 2012;28:77–84.PubMedGoogle Scholar
  48. 48.
    Schmitz KJ, Helwig J, Bertram S, Sheu SY, Suttorp AC, Seggewiss J, et al. Differential expression of microRNA-675, microRNA-139-3p and microRNA-335 in benign and malignant adrenocortical tumours. J Clin Pathol. 2011;64:529–35.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A. 2006;103:2257–61.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Gironella M, Seux M, Xie MJ, Cano C, Tomasini R, Gommeaux J, et al. Tumor protein 53-induced nuclear protein 1 expression is repressed by miR-155, and its restoration inhibits pancreatic tumor development. Proc Natl Acad Sci U S A. 2007;104:16170–5.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Tili E, Michaille JJ, Wernicke D, Alder H, Costinean S, Volinia S, et al. Mutator activity induced by microRNA-155 (miR-155) links inflammation and cancer. Proc Natl Acad Sci U S A. 2011;108:4908–13.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Kouri FM, Hurley LA, Daniel WL, Day ES, Hua Y, Hao L, et al. miR-182 integrates apoptosis, growth, and differentiation programs in glioblastoma. Genes Dev. 2015;29:732–45.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Wang TH, Yeh CT, Ho JY, Ng KF, Chen TC. OncomiR miR-96 and miR-182 promote cell proliferation and invasion through targeting ephrinA5 in hepatocellular carcinoma. Mol Carcinog. 2015.Google Scholar
  54. 54.
    Li J, Chen Y, Zhao J, Kong F, Zhang Y. miR-203 reverses chemoresistance in p53-mutated colon cancer cells through downregulation of Akt2 expression. Cancer Lett. 2011;304:52–9.CrossRefPubMedGoogle Scholar
  55. 55.
    Zhou Y, Wan G, Spizzo R, Ivan C, Mathur R, Hu X, et al. miR-203 induces oxaliplatin resistance in colorectal cancer cells by negatively regulating ATM kinase. Mol Oncol. 2014;8:83–92.CrossRefPubMedGoogle Scholar
  56. 56.
    Motoyama K, Inoue H, Takatsuno Y, Tanaka F, Mimori K, Uetake H, et al. Over- and under-expressed microRNAs in human colorectal cancer. Int J Oncol. 2009;34:1069–75.PubMedGoogle Scholar
  57. 57.
    Han T, Yi XP, Liu B, Ke MJ, Li YX. MicroRNA-145 suppresses cell proliferation, invasion and migration in pancreatic cancer cells by targeting NEDD9. Mol Med Rep. 2015;11:4115–20.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Zhu ZM, Xu YF, Su QJ, Du JD, Tan XL, Tu YL, et al. Prognostic significance of microRNA-141 expression and its tumor suppressor function in human pancreatic ductal adenocarcinoma. Mol Cell Biochem. 2014;388:39–49.CrossRefPubMedGoogle Scholar
  59. 59.
    Zhao G, Wang B, Liu Y, Zhang JG, Deng SC, Qin Q, et al. miRNA-141, downregulated in pancreatic cancer, inhibits cell proliferation and invasion by directly targeting MAP4K4. Mol Cancer Ther. 2013;12:2569–80.CrossRefPubMedGoogle Scholar
  60. 60.
    Guo R, Gu J, Zhang Z, Wang Y, Gu C. MicroRNA-410 functions as a tumor suppressor by targeting angiotensin II type 1 receptor in pancreatic cancer. IUBMB Life. 2015;67:42–53.CrossRefPubMedGoogle Scholar
  61. 61.
    Huang X, Lv W, Zhang JH, Lu DL. miR96 functions as a tumor suppressor gene by targeting NUAK1 in pancreatic cancer. Int J Mol Med. 2014;34:1599–605.PubMedGoogle Scholar
  62. 62.
    Wang S, Chen X, Tang M. MicroRNA-216a inhibits pancreatic cancer by directly targeting Janus kinase 2. Oncol Rep. 2014;32:2824–30.PubMedGoogle Scholar
  63. 63.
    Liu H, Xu XF, Zhao Y, Tang MC, Zhou YQ, Lu J, et al. MicroRNA-191 promotes pancreatic cancer progression by targeting USP10. Tumour Biol. 2014;35:12157–63.CrossRefPubMedGoogle Scholar
  64. 64.
    Song Z, Ren H, Gao S, Zhao X, Zhang H, Hao J. The clinical significance and regulation mechanism of hypoxia-inducible factor-1 and miR-191 expression in pancreatic cancer. Tumour Biol. 2014;35:11319–28.CrossRefPubMedGoogle Scholar
  65. 65.
    Li J, Kong F, Wu K, Song K, He J, Sun W. miR-193b directly targets STMN1 and uPA genes and suppresses tumor growth and metastasis in pancreatic cancer. Mol Med Rep. 2014;10:2613–20.PubMedGoogle Scholar
  66. 66.
    Zhang ZL, Bai ZH, Wang XB, Bai L, Miao F, Pei HH. miR-186 and 326 predict the prognosis of pancreatic ductal adenocarcinoma and affect the proliferation and migration of cancer cells. PLoS One. 2015;10:e0118814.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Zhou L, Zhang WG, Wang DS, Tao KS, Song WJ, Dou KF. MicroRNA-183 is involved in cell proliferation, survival and poor prognosis in pancreatic ductal adenocarcinoma by regulating Bmi-1. Oncol Rep. 2014;32:1734–40.PubMedGoogle Scholar
  68. 68.
    He H, Hao SJ, Yao L, Yang F, Di Y, Li J, et al. MicroRNA-218 inhibits cell invasion and migration of pancreatic cancer via regulating ROBO1. Cancer Biol Ther. 2014;15:1333–9.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    He D, Miao H, Xu Y, Xiong L, Wang Y, Xiang H, et al. MiR-371-5p facilitates pancreatic cancer cell proliferation and decreases patient survival. PLoS One. 2014;9:e112930.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Papaconstantinou IG, Manta A, Gazouli M, Lyberopoulou A, Lykoudis PM, Polymeneas G, et al. Expression of microRNAs in patients with pancreatic cancer and its prognostic significance. Pancreas. 2013;42:67–71.CrossRefPubMedGoogle Scholar
  71. 71.
    Xue YZ, Sheng YY, Liu ZL, Wei ZQ, Cao HY, Wu YM, et al. Expression of NEDD9 in pancreatic ductal adenocarcinoma and its clinical significance. Tumour Biol. 2013;34:895–9.CrossRefPubMedGoogle Scholar
  72. 72.
    Zhou H, Rigoutsos I. MiR-103a-3p targets the 5′ UTR of GPRC5A in pancreatic cells. RNA. 2014;20:1431–9.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Ma J, Fang B, Zeng F, Pang H, Zhang J, Shi Y, et al. Curcumin inhibits cell growth and invasion through up-regulation of miR-7 in pancreatic cancer cells. Toxicol Lett. 2014;231:82–91.CrossRefPubMedGoogle Scholar
  74. 74.
    Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A. 2008;105:10513–8.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Kawaguchi T, Komatsu S, Ichikawa D, Morimura R, Tsujiura M, Konishi H, et al. Clinical impact of circulating miR-221 in plasma of patients with pancreatic cancer. Br J Cancer. 2013;108:361–9.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Tian Y, Xue Y, Ruan G, Cheng K, Tian J, Qiu Q, et al. Interaction of serum microRNAs and serum folate with the susceptibility to pancreatic cancer. Pancreas. 2015;44:23–30.CrossRefPubMedGoogle Scholar
  77. 77.
    Wang J, Chen J, Chang P, LeBlanc A, Li D, Abbruzzesse JL, et al. MicroRNAs in plasma of pancreatic ductal adenocarcinoma patients as novel blood-based biomarkers of disease. Cancer Prev Res (Phila). 2009;2:807–13.CrossRefGoogle Scholar
  78. 78.
    Morimura R, Komatsu S, Ichikawa D, Takeshita H, Tsujiura M, Nagata H, et al. Novel diagnostic value of circulating miR-18a in plasma of patients with pancreatic cancer. Br J Cancer. 2011;105:1733–40.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Wang J, Raimondo M, Guha S, Chen J, Diao L, Dong X, et al. Circulating microRNAs in pancreatic juice as candidate biomarkers of pancreatic cancer. J Cancer. 2014;5:696–705.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Terzic J, Grivennikov S, Karin E, Karin M. Inflammation and colon cancer. Gastroenterology. 2010;38:2101–14.e5.CrossRefGoogle Scholar
  81. 81.
    De Simone V, Franze E, Ronchetti G, Colantoni A, Fantini MC, Di Fusco D, et al. Th17-type cytokines, IL-6 and TNF-alpha synergistically activate STAT3 and NF-kB to promote colorectal cancer cell growth. Oncogene. 2014.Google Scholar
  82. 82.
    Wu F, Zikusoka M, Trindade A, Dassopoulos T, Harris ML, Bayless TM, et al. MicroRNAs are differentially expressed in ulcerative colitis and alter expression of macrophage inflammatory peptide-2 alpha. Gastroenterology. 2008;135:1624–35.e24.CrossRefPubMedGoogle Scholar
  83. 83.
    Pekow JR, Kwon JH. MicroRNAs in inflammatory bowel disease. Inflamm Bowel Dis. 2012;18:187–93.CrossRefPubMedGoogle Scholar
  84. 84.
    Loffler D, Brocke-Heidrich K, Pfeifer G, Stocsits C, Hackermuller J, Kretzschmar AK, et al. Interleukin-6 dependent survival of multiple myeloma cells involves the Stat3-mediated induction of microRNA-21 through a highly conserved enhancer. Blood. 2007;110:1330–3.CrossRefPubMedGoogle Scholar
  85. 85.
    Li X, Gao L, Cui Q, Gary BD, Dyess DL, Taylor W, et al. Sulindac inhibits tumor cell invasion by suppressing NF-kappaB-mediated transcription of microRNAs. Oncogene. 2012;31:4979–86.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Liu S, Sun X, Wang M, Hou Y, Zhan Y, Jiang Y, et al. A microRNA 221- and 222-mediated feedback loop maintains constitutive activation of NFkappaB and STAT3 in colorectal cancer cells. Gastroenterology. 2014;147:847–59.e11.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Iliopoulos D, Jaeger SA, Hirsch HA, Bulyk ML, Struhl K. STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer. Mol Cell. 2010;39:493–506.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Pu J, Bai D, Yang X, Lu X, Xu L, Lu J. Adrenaline promotes cell proliferation and increases chemoresistance in colon cancer HT29 cells through induction of miR-155. Biochem Biophys Res Commun. 2012;428:210–5.CrossRefPubMedGoogle Scholar
  89. 89.
    Chuang AY, Chuang JC, Zhai Z, Wu F, Kwon JH. NOD2 expression is regulated by microRNAs in colonic epithelial HCT116 cells. Inflamm Bowel Dis. 2014;20:126–35.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Borralho PM, Kren BT, Castro RE, da Silva IB, Steer CJ, Rodrigues CM. MicroRNA-143 reduces viability and increases sensitivity to 5-fluorouracil in HCT116 human colorectal cancer cells. FEBS J. 2009;276:6689–700.CrossRefPubMedGoogle Scholar
  91. 91.
    Wang BD, Kline CL, Pastor DM, Olson TL, Frank B, Luu T, et al. Prostate apoptosis response protein 4 sensitizes human colon cancer cells to chemotherapeutic 5-FU through mediation of an NF kappaB and microRNA network. Mol Cancer. 2010;9:98. doi: 10.1186/1476-4598-9-98.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Angel-Morales G, Noratto G, Mertens-Talcott S. Red wine polyphenolics reduce the expression of inflammation markers in human colon-derived CCD-18Co myofibroblast cells: potential role of microRNA-126. Food Funct. 2012;3:745–52.CrossRefPubMedGoogle Scholar
  93. 93.
    Pinho AV, Chantrill L, Rooman I. Chronic pancreatitis: a path to pancreatic cancer. Cancer Lett. 2014;345:203–9.CrossRefPubMedGoogle Scholar
  94. 94.
    Marin-Muller C, Li D, Bharadwaj U, Li M, Chen C, Hodges SE, et al. A tumorigenic factor interactome connected through tumor suppressor microRNA-198 in human pancreatic cancer. Clin Cancer Res. 2013;19:5901–13.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Huang F, Tang J, Zhuang X, Zhuang Y, Cheng W, Chen W, et al. MiR-196a promotes pancreatic cancer progression by targeting nuclear factor kappa-B-inhibitor alpha. PLoS One. 2014;9:e87897.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Li Y, Vandenboom 2nd TG, Wang Z, Kong D, Ali S, Philip PA, et al. miR-146a suppresses invasion of pancreatic cancer cells. Cancer Res. 2010;70:1486–95.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Huang L, Liu Y, Wang L, Chen R, Ge W, Lin Z, et al. Down-regulation of miR-301a suppresses pro-inflammatory cytokines in Toll-like receptor-triggered macrophages. Immunology. 2013;140:314–22.PubMedPubMedCentralGoogle Scholar
  98. 98.
    Lu Z, Li Y, Takwi A, Li B, Zhang J, Conklin DJ, et al. miR-301a as an NF-kappaB activator in pancreatic cancer cells. EMBO J. 2011;30:57–67.CrossRefPubMedGoogle Scholar
  99. 99.
    Funamizu N, Lacy CR, Parpart ST, Takai A, Hiyoshi Y, Yanaga K. MicroRNA-301b promotes cell invasiveness through targeting TP63 in pancreatic carcinoma cells. Int J Oncol. 2014;44:725–34.PubMedGoogle Scholar
  100. 100.
    Takiuchi D, Eguchi H, Nagano H, Iwagami Y, Tomimaru Y, Wada H, et al. Involvement of microRNA-181b in the gemcitabine resistance of pancreatic cancer cells. Pancreatology. 2013;13:517–23.CrossRefPubMedGoogle Scholar
  101. 101.
    Ali S, Ahmad A, Banerjee S, Padhye S, Dominiak K, Schaffert JM, et al. Gemcitabine sensitivity can be induced in pancreatic cancer cells through modulation of miR-200 and miR-21 expression by curcumin or its analogue CDF. Cancer Res. 2010;70:3606–17.CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Parasramka MA, Ali S, Banerjee S, Deryavoush T, Sarkar FH, Gupta S. Garcinol sensitizes human pancreatic adenocarcinoma cells to gemcitabine in association with microRNA signatures. Mol Nutr Food Res. 2013;57:235–48.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Ganji Purnachandra Nagaraju
    • 1
  • Appiya Santharam Madanraj
    • 2
  • Sheik Aliya
    • 3
  • Balney Rajitha
    • 1
    • 4
  • Olatunji Boladale Alese
    • 1
  • Ekamber Kariali
    • 5
  • Afroz Alam
    • 4
  • Bassel F. El-Rayes
    • 1
  1. 1.Department of Hematology and Medical Oncology, Winship Cancer InstituteEmory UniversityAtlantaUSA
  2. 2.Department of Infection, Immunity and InflammationUniversity of LeicesterLeicesterUK
  3. 3.Department of BiotechnologyJawaharlal Nehru Technological UniversityHyderabadIndia
  4. 4.Department of MicrobiologyBanasthali UniversityBanasthaliIndia
  5. 5.School of Life Sciences, Department of BiotechnologySambalpur University, Jyoti ViharSambalpurIndia

Personalised recommendations