Skip to main content
Log in

Effects of the GSK-3β inhibitor (2Z,3E)-6-bromoindirubin-3′-oxime upon ovarian cancer cells

  • Original Article
  • Published:
Tumor Biology

Abstract

Ovarian cancer (OC) is a deadly disease, and despite improvements in treatment, overall 5-year survival is low. Glycogen synthase kinase (GSK)-3β is a multifunctional serine/threonine kinase. We wished to ascertain if the GSK-3β inhibitor (2Z,3E)-6-bromoindirubin-3′-oxime, known as “BIO,” can suppress OC development. The OC cell lines A2780 and OVCAR3 were exposed to BIO. At different time points, cell proliferation, apoptosis, cell cycle, and cell invasion/cell migration assays were carried out. Phalloidin staining was undertaken to observe lamellipodia formation. Real-time reverse transcription-polymerase chain reaction and western blotting were used to assess expression of messenger RNA (mRNA) and protein of GSK-3β, cyclin D1, matrix metalloproteinase (MMP)-9, and p21. BIO suppressed the proliferation, invasion, and migration of OC cells; reduced lamellipodia formation; and induced G1 arrest of the cell cycle. BIO exposure led to a significant downregulation of mRNA and protein expression of cyclin D1 and MMP9 in comparison with untreated control cells. In contrast, BIO exposure upregulated mRNA and protein expression of p21 in comparison with untreated control cells. Besides, GSK-3β small interfering RNA (siRNA) transfection in ovarian cancer cells also downregulated GSK-3β, cyclin D1, and MMP9 protein expression while upregulated p21 expression. These data suggest that BIO, as an inhibitor of GSK-3β, can suppress OC development. Therefore, BIO could be a candidate drug for the treatment of OC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mantia-Smaldone GM, Edwards RP, Vlad AM. Targeted treatment of recurrent platinum-resistant ovarian cancer: current and emerging therapies. Cancer Manag Res. 2011;3:25–38.

    CAS  PubMed  Google Scholar 

  2. Lengyel E. Ovarian cancer development and metastasis. Am J Pathol. 2010;177:1053–64.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ji K, Ye L, Mason MD, Jiang WG. The Kiss-1/Kiss-1R complex as a negative regulator of cell motility and cancer metastasis (Review). Int J Mol Med. 2013;32:747–54.

    CAS  PubMed  Google Scholar 

  4. Embi N, Rylatt DB, Cohen P. Glycogen synthase kinase-3 from rabbit skeletal muscle. Separation from cyclic-AMP-dependent protein kinase and phosphorylase kinase. Eur J Biochem / FEBS. 1980;107:519–27.

    Article  CAS  Google Scholar 

  5. Kotliarova S, Pastorino S, Kovell LC, Kotliarov Y, Song H, Zhang W, et al. Glycogen synthase kinase-3 inhibition induces glioma cell death through c-MYC, nuclear factor-kappaB, and glucose regulation. Cancer Res. 2008;68:6643–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tang QL, Xie XB, Wang J, Chen Q, Han AJ, Zou CY, et al. Glycogen synthase kinase-3beta, NF-kappaB signaling, and tumorigenesis of human osteosarcoma. J Natl Cancer Inst. 2012;104:749–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Madhunapantula SV, Sharma A, Gowda R, Robertson GP. Identification of glycogen synthase kinase 3alpha as a therapeutic target in melanoma. Pigment Cell Melanoma Res. 2013;26:886–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Salim T, Sjolander A, Sand-Dejmek J. Nuclear expression of glycogen synthase kinase-3beta and lack of membranous beta-catenin is correlated with poor survival in colon cancer. Int J Cancer. 2013;133:807–15.

    Article  CAS  PubMed  Google Scholar 

  9. Tsai KH, Hsien HH, Chen LM, Ting WJ, Yang YS, Kuo CH, et al. Rhubarb inhibits hepatocellular carcinoma cell metastasis via GSK-3-beta activation to enhance protein degradation and attenuate nuclear translocation of beta-catenin. Food Chem. 2013;138:278–85.

    Article  CAS  PubMed  Google Scholar 

  10. Boulahja R, Ouach A, Bourg S, Bonnet P, Lozach O, Meijer L, et al. Advances in tetrahydropyrido[1,2-a]isoindolone (valmerins) series: potent glycogen synthase kinase 3 and cyclin dependent kinase 5 inhibitors. Eur J Med Chem. 2015;101:274–87.

    Article  Google Scholar 

  11. Kunnimalaiyaan S, Gamblin TC, Kunnimalaiyaan M. Glycogen synthase kinase-3 inhibitor AR-A014418 suppresses pancreatic cancer cell growth via inhibition of GSK-3-mediated Notch1 expression. HPB (Oxford). 2015;17(9):770–6.

    Article  Google Scholar 

  12. Woodard C, Liao G, Goodwin CR, Hu J, Xie Z, Dos Reis TF, et al. A screen for extracellular signal-regulated kinase-primed glycogen synthase kinase 3 substrates identifies the p53 inhibitor Iaspp. J Virol. 2015;89(18):9232–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Singh SP, Tao S, Fields TA, Webb S, Harris RC, Rao R. Glycogen synthase kinase-3 inhibition attenuates fibroblast activation and development of fibrosis following renal ischemia-reperfusion in mice. Dis Model Mech. 2015;8(8):931–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Atkinson JM, Rank KB, Zeng Y, Capen A, Yadav V, Manro JR, et al. Activating the Wnt/β-catenin pathway for the treatment of melanoma—application of LY2090314, a novel selective inhibitor of glycogen synthase kinase-3. PLoS One. 2015;10(4):e0125028.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Moroi AJ, Watson SP. Akt and mitogen-activated protein kinase enhance C-type lectin-like receptor 2-mediated platelet activation by inhibition of glycogen synthase kinase 3α/β. J Thromb Haemost. 2015;13(6):1139–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kim KM, Lee KS, Lee GY, Jin H, Durrance ES, Park HS, et al. Anti-diabetic efficacy of KICG1338, a novel glycogen synthase kinase-3β inhibitor, and its molecular characterization in animal models of type 2 diabetes and insulin resistance. Mol Cell Endocrinol. 2015;409:1–10.

    Article  CAS  PubMed  Google Scholar 

  17. Park SM, Ki SH, Han NR, Cho IJ, Ku SK, Kim SC, et al. Tacrine, an oral acetylcholinesterase inhibitor, induced hepatic oxidative damage, which was blocked by liquiritigenin through GSK3-beta inhibition. Biol Pharm Bull. 2015;38(2):184–92.

    Article  CAS  PubMed  Google Scholar 

  18. Arfeen M, Patel R, Khan T, Bharatam PV. Molecular dynamics simulation studies of GSK-3beta ATP competitive inhibitors: understanding the factors contributing to selectivity. J Biomol Struct Dyn. 2015; 1–55.

  19. Nicolaou KA, Liapis V, Evdokiou A, Constantinou C, Magiatis P, Skaltsounis AL, et al. Induction of discrete apoptotic pathways by bromo-substituted indirubin derivatives in invasive breast cancer cells. Biochem Biophys Res Commun. 2012;425:76–82.

    Article  CAS  PubMed  Google Scholar 

  20. Liu L, Nam S, Tian Y, Yang F, Wu J, Wang Y, et al. 6-Bromoindirubin-3′-oxime inhibits JAK/STAT3 signaling and induces apoptosis of human melanoma cells. Cancer Res. 2011;71:3972–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cao H, Chu Y, Lv X, Qiu P, Liu C, Zhang H, et al. GSK3 inhibitor-BIO regulates proliferation of immortalized pancreatic mesenchymal stem cells (iPMSCs). PLoS One. 2012;7:e31502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dastjerdi FV, Zeynali B, Tafreshi AP, Shahraz A, Chavoshi MS, Najafabadi IK, et al. Inhibition of GSK-3beta enhances neural differentiation in unrestricted somatic stem cells. Cell Biol Int. 2012;36:967–2.

    Article  CAS  PubMed  Google Scholar 

  23. Ougolkov AV, Fernandez-Zapico ME, Savoy DN, Urrutia RA, Billadeau DD. Glycogen synthase kinase-3beta participates in nuclear factor kappaB-mediated gene transcription and cell survival in pancreatic cancer cells. Cancer Res. 2005;65:2076–81.

    Article  CAS  PubMed  Google Scholar 

  24. Bilim V, Ougolkov A, Yuuki K, Naito S, Kawazoe H, Muto A, et al. Glycogen synthase kinase-3: a new therapeutic target in renal cell carcinoma. Br J Cancer. 2009;101:2005–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cao Q, Lu X, Feng YJ. Glycogen synthase kinase-3beta positively regulates the proliferation of human ovarian cancer cells. Cell Res. 2006;16:671–7.

    Article  CAS  PubMed  Google Scholar 

  26. Cao Q, Feng YJ. Glycogen synthase kinase-3beta (GSK-3beta) promotes proliferation of ovarian cancer cells in vitro. Zhonghua Zhong Liu Za Zhi. 2006;28:804–9.

    CAS  PubMed  Google Scholar 

  27. Chien AJ, Moore EC, Lonsdorf AS, Kulikauskas RM, Rothberg BG, Berger AJ, et al. Activated Wnt/beta-catenin signaling in melanoma is associated with decreased proliferation in patient tumors and a murine melanoma model. Proc Natl Acad Sci U S A. 2009;106:1193–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yuhua Z, Han C, Jiyuan L, Wei Z, Lin Q, Xiufa T. Expression and clinical significance of nuclear factor κB/B cell lymphoma-2 signal pathway and glycogen synthase kinase 3β in oral squamous cell carcinoma. Hua Xi Kou Qiang Yi Xue Za Zhi. 2015;33(1):11–5.

    PubMed  Google Scholar 

  29. Campa VM, Baltziskueta E, Bengoa-Vergniory N, Gorroño-Etxebarria I, Wesołowski R, Waxman J, et al. A screen for transcription factor targets of glycogen synthase kinase-3 highlights an inverse correlation of NFκB and androgen receptor signaling in prostate cancer. Oncotarget. 2014;5(18):8173–87.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Gao X, He Y, Gao LM, Feng J, Xie Y, Liu X, et al. Ser9-phosphorylated GSK3β induced by 14-3-3ζ actively antagonizes cell apoptosis in a NF-κB dependent manner. Biochem Cell Biol. 2014;92(5):349–56.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Zhao.

Ethics declarations

Conflicts of interest

None.

Authors’ contributions

LZ conceived the study and analyzed interpretation. AS Y and LZ carried out the experiments, analyzed the data, and wrote the first and final draft of the manuscript. All authors read and approved the final manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, AS., Zhao, L. Effects of the GSK-3β inhibitor (2Z,3E)-6-bromoindirubin-3′-oxime upon ovarian cancer cells. Tumor Biol. 37, 4857–4864 (2016). https://doi.org/10.1007/s13277-015-4344-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-4344-8

Keywords

Navigation