Skip to main content

Advertisement

Log in

MicroRNA-100 suppresses the migration and invasion of breast cancer cells by targeting FZD-8 and inhibiting Wnt/β-catenin signaling pathway

  • Original Article
  • Published:
Tumor Biology

Abstract

Wnt/β-catenin signaling pathway plays a major role in the cancer metastasis. Several microRNAs (miRNAs) are contributed to the inhibition of breast cancer metastasis. Here, we attempted to find novel targets and mechanisms of microRNA-100 (miR-100) in regulating the migration and invasion of breast cancer cells. In this study, we found that miR-100 expression was downregulated in human breast cancer tissues and cell lines. The overexpression of miR-100 inhibited the migration and invasion of MDA-MB-231 breast cancer cells. Inversely, the downregulation of miR-100 increased the migration and invasion of MCF-7 breast cancer cells. Furthermore, FZD-8, a receptor of Wnt/β-catenin signaling pathway, was demonstrated a direct target of miR-100. The overexpression of miR-100 decreased the expression levels not only FZD-8 but also the key components of Wnt/β-catenin pathway, including β-catenin, metalloproteniase-7 (MMP-7), T-cell factor-4 (TCF-4), and lymphoid enhancing factor-1 (LEF-1), and increased the protein expression levels of GSK-3β and p-GSK-3β in MDA-MB-231 cells, and the transfection of miR-100 inhibitor in MCF-7 cells showed the opposite effects. In addition, the expression of miR-100 was negatively correlated with the FZD-8 expression in human breast cancer tissues. Overall, these findings suggest that miR-100 suppresses the migration and invasion of breast cancer cells by targeting FZD-8 and inhibiting Wnt/β-catenin signaling pathway and manipulation of miR-100 may provide a promoting therapeutic strategy for cancer breast treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Gangadhara S, Barrett-Lee P, Nicholson RI, Hiscox S. Pro-metastatic tumor-stroma interactions in breast cancer. Future Oncol. 2012;8(11):1427–42. doi:10.2217/fon.12.134.

    Article  CAS  PubMed  Google Scholar 

  2. Klemm F, Bleckmann A, Siam L, Chuang HN, Rietkotter E, Behme D, et al. beta-catenin-independent WNT signaling in basal-like breast cancer and brain metastasis. Carcinogenesis. 2011;32(3):434–42. doi:10.1093/carcin/bgq269.

    Article  CAS  PubMed  Google Scholar 

  3. Tang B, Vu M, Booker T, Santner SJ, Miller FR, Anver MR, et al. TGF-beta switches from tumor suppressor to prometastatic factor in a model of breast cancer progression. J Clin Invest. 2003;112(7):1116–24. doi:10.1172/JCI18899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hu YY, Zheng MH, Zhang R, Liang YM, Han H. Notch signaling pathway and cancer metastasis. Adv Exp Med Biol. 2012;727:186–98. doi:10.1007/978-1-4614-0899-4_14.

    Article  CAS  PubMed  Google Scholar 

  5. Clevers H. Wnt/beta-catenin signaling in development and disease. Cell. 2006;127(3):469–80. doi:10.1016/j.cell.2006.10.018.

    Article  CAS  PubMed  Google Scholar 

  6. MacDonald BT, Tamai K, He X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell. 2009;17(1):9–26. doi:10.1016/j.devcel.2009.06.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Khramtsov AI, Khramtsova GF, Tretiakova M, Huo DZ, Olopade OI, Goss KH. Wnt/beta-Catenin Pathway Activation Is Enriched in Basal-Like Breast Cancers and Predicts Poor Outcome. Am J Pathol. 2010;176(6):2911–20. doi:10.2353/ajpath.2010.091125.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Arend RC, Londono-Joshi AI, Straughn Jr JM, Buchsbaum DJ. The Wnt/beta-catenin pathway in ovarian cancer: a review. Gynecol Oncol. 2013;131(3):772–9. doi:10.1016/j.ygyno.2013.09.034.

    Article  CAS  PubMed  Google Scholar 

  9. Serafino A, Moroni N, Zonfrillo M, Andreola F, Mercuri L, Nicotera G, et al. WNT-pathway components as predictive markers useful for diagnosis, prevention and therapy in inflammatory bowel disease and sporadic colorectal cancer. Oncotarget. 2014;5(4):978–92.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.

    Article  CAS  PubMed  Google Scholar 

  11. Liu P, Tang H, Chen B, He Z, Deng M, Wu M, et al. miR-26a suppresses tumour proliferation and metastasis by targeting metadherin in triple negative breast cancer. Cancer Lett. 2015;357(1):384–92. doi:10.1016/j.canlet.2014.11.050.

    Article  CAS  PubMed  Google Scholar 

  12. Chan SH, Huang WC, Chang JW, Chang KJ, Kuo WH, Wang MY, et al. MicroRNA-149 targets GIT1 to suppress integrin signaling and breast cancer metastasis. Oncogene. 2014;33(36):4496–507. doi:10.1038/onc.2014.10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Christodoulou F, Raible F, Tomer R, Simakov O, Trachana K, Klaus S, et al. Ancient animal microRNAs and the evolution of tissue identity. Nature. 2010;463(7284):1084–8. doi:10.1038/nature08744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zheng YS, Zhang H, Zhang XJ, Feng DD, Luo XQ, Zeng CW, et al. MiR-100 regulates cell differentiation and survival by targeting RBSP3, a phosphatase-like tumor suppressor in acute myeloid leukemia. Oncogene. 2012;31(1):80–92. doi:10.1038/onc.2011.208.

    Article  PubMed  Google Scholar 

  15. Li ZP, Li X, Yu C, Wang M, Peng F, Xiao J, et al. MicroRNA-100 regulates pancreatic cancer cells growth and sensitivity to chemotherapy through targeting FGFR3. Tumor Biol. 2014;35(12):11751–9. doi:10.1007/s13277-014-2271-8.

    Article  CAS  Google Scholar 

  16. Gebeshuber CA, Martinez J. miR-100 suppresses IGF2 and inhibits breast tumorigenesis by interfering with proliferation and survival signaling. Oncogene. 2013;32(27):3306–10. doi:10.1038/onc.2012.372.

    Article  CAS  PubMed  Google Scholar 

  17. Chen D, Sun Y, Yuan Y, Han Z, Zhang P, Zhang J, et al. miR-100 induces epithelial-mesenchymal transition but suppresses tumorigenesis, migration and invasion. PLoS Genet. 2014;10(2):e1004177. doi:10.1371/journal.pgen.1004177.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ma MT, He M, Wang Y, Jiao XY, Zhao L, Bai XF, et al. MiR-487a resensitizes mitoxantrone (MX)-resistant breast cancer cells (MCF-7/MX) to MX by targeting breast cancer resistance protein (BCRP/ABCG2). Cancer Lett. 2013;339(1):107–15. doi:10.1016/j.canlet.2013.07.016.

    Article  CAS  PubMed  Google Scholar 

  19. Bai X, Song Z, Fu Y, Yu Z, Zhao L, Zhao H, et al. Clinicopathological significance and prognostic value of DNA methyltransferase 1, 3a, and 3b expressions in sporadic epithelial ovarian cancer. PLoS One. 2012;7(6):e40024. doi:10.1371/journal.pone.0040024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Han HS, Son SM, Yun J, Jo YN, Lee OJ. MicroRNA-29a suppresses the growth, migration, and invasion of lung adenocarcinoma cells by targeting carcinoembryonic antigen-related cell adhesion molecule 6. FEBS Lett. 2014;588(20):3744–50. doi:10.1016/j.febslet.2014.08.023.

    Article  CAS  PubMed  Google Scholar 

  21. Nishikawa R, Goto Y, Kojima S, Enokida H, Chiyomaru T, Kinoshita T, et al. Tumor-suppressive microRNA-29s inhibit cancer cell migration and invasion via targeting LAMC1 in prostate cancer. Int J Oncol. 2014;45(1):401–10. doi:10.3892/ijo.2014.2437.

    CAS  PubMed  Google Scholar 

  22. Chen P, Zhao X, Ma L. Downregulation of microRNA-100 correlates with tumor progression and poor prognosis in hepatocellular carcinoma. Mol Cell Biochem. 2013;383(1-2):49–58. doi:10.1007/s11010-013-1753-0.

    Article  CAS  PubMed  Google Scholar 

  23. Peng DX, Luo M, Qiu LW, He YL, Wang XF. Prognostic implications of microRNA-100 and its functional roles in human epithelial ovarian cancer. Oncol Rep. 2012;27(4):1238–44. doi:10.3892/or.2012.1625.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Petrelli A, Carollo R, Cargnelutti M, Iovino F, Callari M, Cimino D, et al. By promoting cell differentiation, miR-100 sensitizes basal-like breast cancer stem cells to hormonal therapy. Oncotarget. 2015;6(4):2315–30.

    Article  PubMed  Google Scholar 

  25. Tang J, Tao ZH, Wen D, Wan JL, Liu DL, Zhang S, et al. MiR-612 suppresses the stemness of liver cancer via Wnt/beta-catenin signaling. Biochem Biophys Res Commun. 2014;447(1):210–5. doi:10.1016/j.bbrc.2014.03.135.

    Article  CAS  PubMed  Google Scholar 

  26. Subramanian M, Rao SR, Thacker P, Chatterjee S, Karunagaran D. MiR-29b downregulates canonical Wnt signaling by suppressing coactivators of beta-catenin in human colorectal cancer cells. J Cell Biochem. 2014;115(11):1974–84. doi:10.1002/jcb.24869.

    CAS  PubMed  Google Scholar 

  27. Zhao JJ, Lin JH, Zhu D, Wang XJ, Brooks D, Chen M, et al. miR-30-5p functions as a tumor suppressor and novel therapeutic tool by targeting the oncogenic wnt/beta-catenin/bcl9 pathway. Cancer Res. 2014;74(6):1801–13. doi:10.1158/0008-5472.CAN-13-3311-T.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang HQ, Xu ML, Ma J, Zhang Y, Xie CH. Frizzled-8 as a putative therapeutic target in human lung cancer. Biochem Biophys Res Commun. 2012;417(1):62–6. doi:10.1016/j.bbrc.2011.11.055.

    Article  CAS  PubMed  Google Scholar 

  29. Yin S, Xu L, Bonfil RD, Banerjee S, Sarkar FH, Sethi S, et al. Tumor-initiating cells and FZD8 play a major role in drug resistance in triple-negative breast cancer. Mol Cancer Ther. 2013;12(4):491–8. doi:10.1158/1535-7163.MCT-12-1090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (Grant No. 81373427), Program for Liaoning Innovative Research Team in University, LNIRT, China (Grant No. LT2014016), the Liaoning Provincial Science and Technology Program, China (Grant No. 2013225079), Program for Liaoning Excellent Talents in University, China (Grant No. LJQ2014084), and the S&T Projects in Shenyang, China (Grant No. F14-232-6-05).

Authors’ contributions

Minjie Wei and Miao He designed the experiments. Qian Jiang, Huizhe Wu, Zhaojin Yu, Longyang Jiang, Yan Wang, and Xingyue Zong performed the experiments. Qian Jiang, Mengtao Ma, and Miao He analyzed the data. Shu Guan and Feng Jin gave technical and material support. Miao He, Qian Jiang, and Minjie Wei wrote and reviewed the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minjie Wei.

Ethics declarations

Conflicts of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Q., He, M., Guan, S. et al. MicroRNA-100 suppresses the migration and invasion of breast cancer cells by targeting FZD-8 and inhibiting Wnt/β-catenin signaling pathway. Tumor Biol. 37, 5001–5011 (2016). https://doi.org/10.1007/s13277-015-4342-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-4342-x

Keywords

Navigation