Tumor Biology

, Volume 37, Issue 1, pp 77–85 | Cite as

Regulatory T cells in the immunotherapy of melanoma

  • Zhengxiao Ouyang
  • Hongwei Wu
  • Linqin Li
  • Yi Luo
  • Xianan Li
  • Gang Huang
Review

Abstract

Patients with melanoma are supposed to develop spontaneous immune responses against specific tumor antigens. However, several mechanisms contribute to the failure of tumor antigen-specific T cell responses, inducing immune escape. Importantly, immunosuppression mediated by regulatory T cells (Tregs) in tumor lesions is a dominant mechanism of tumor immune evasion. Based on this information, several therapies targeting Tregs such as cyclophosphamide, IL-2-based therapies, and antibodies against the surface molecular of Tregs have been developed. However, only some of these strategies showed clinical efficacy in patients with melanoma in spite of their success in shifting immune systems to antitumor responses in animal models. In the future, strategies specifically depleting local Tregs, inhibiting Treg migration to the tumor lesion, and Treg depletion in combination with other chemotherapies or immune modulation will hopefully bring benefits to melanoma patients.

Keywords

Regulatory T cells Melanoma Immunotherapy 

Notes

Compliance with ethical standards

Conflicts of interest

None

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

All study participants provided informed consent.

References

  1. 1.
    Lens MB, Dawes M. Global perspectives of contemporary epidemiological trends of cutaneous malignant melanoma. Br J Dermatol. 2004;150:179–85.CrossRefPubMedGoogle Scholar
  2. 2.
    Jacobs JF, Nierkens S, Figdor CG, de Vries IJ, Adema GJ. Regulatory T cells in melanoma: the final hurdle towards effective immunotherapy? Lancet Oncol. 2012;13:e32–42.CrossRefPubMedGoogle Scholar
  3. 3.
    Boon T, Coulie PG, Van den Eynde BJ, van der Bruggen P. Human T cell responses against melanoma. Annu Rev Immunol. 2006;24:175–208.CrossRefPubMedGoogle Scholar
  4. 4.
    Garbe C, Eigentler TK, Keilholz U, Hauschild A, Kirkwood JM. Systematic review of medical treatment in melanoma: current status and future prospects. Oncologist. 2011;16:5–24.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Jandus C, Speiser D, Romero P. Recent advances and hurdles in melanoma immunotherapy. Pigment Cell Melanoma Res. 2009;22:711–23.CrossRefPubMedGoogle Scholar
  6. 6.
    Fourcade J, Zarour HM. Strategies to reverse melanoma-induced T-cell dysfunction. Clin Dermatol. 2013;31:251–6.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Yang S, Fujikado N, Kolodin D, Benoist C, Mathis D. Immune tolerance. Regulatory T cells generated early in life play a distinct role in maintaining self-tolerance. Science. 2015;348:589–94.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Peterson RA. Regulatory T-cells: diverse phenotypes integral to immune homeostasis and suppression. Toxicol Pathol. 2012;40:186–204.CrossRefPubMedGoogle Scholar
  9. 9.
    Sakaguchi S, Miyara M, Costantino CM, Hafler DA. FOXP3+ regulatory T cells in the human immune system. Nat Rev Immunol. 2010;10:490–500.CrossRefPubMedGoogle Scholar
  10. 10.
    Battaglia M, Roncarolo MG. Immune intervention with T regulatory cells: past lessons and future perspectives for type 1 diabetes. Semin Immunol. 2011;23:182–94.CrossRefPubMedGoogle Scholar
  11. 11.
    Takahashi T, Tagami T, Yamazaki S, Uede T, Shimizu J, et al. Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med. 2000;192:303–10.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Thornton AM, Shevach EM. Suppressor effector function of CD4+CD25+ immunoregulatory T cells is antigen nonspecific. J Immunol. 2000;164:183–90.CrossRefPubMedGoogle Scholar
  13. 13.
    Baecher-Allan C, Brown JA, Freeman GJ, Hafler DA. CD4+CD25+ regulatory cells from human peripheral blood express very high levels of CD25 ex vivo. Novartis Found Symp. 2003;252:67–88. discussion 88–91, 106–114.CrossRefPubMedGoogle Scholar
  14. 14.
    Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science. 2003;299:1057–61.CrossRefPubMedGoogle Scholar
  15. 15.
    Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol. 2003;4:330–6.CrossRefPubMedGoogle Scholar
  16. 16.
    Khattri R, Cox T, Yasayko SA, Ramsdell F. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat Immunol. 2003;4:337–42.CrossRefPubMedGoogle Scholar
  17. 17.
    Wildin RS, Ramsdell F, Peake J, Faravelli F, Casanova JL, et al. X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat Genet. 2001;27:18–20.CrossRefPubMedGoogle Scholar
  18. 18.
    Fontenot JD, Dooley JL, Farr AG, Rudensky AY. Developmental regulation of Foxp3 expression during ontogeny. J Exp Med. 2005;202:901–6.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Ndhlovu LC, Takeda I, Sugamura K, Ishii N. Expanding role of T-cell costimulators in regulatory T-cell function: recent advances in accessory molecules expressed on both regulatory and nonregulatory T cells. Crit Rev Immunol. 2004;24:251–66.CrossRefPubMedGoogle Scholar
  20. 20.
    Antony PA, Restifo NP. CD4+CD25+ T regulatory cells, immunotherapy of cancer, and interleukin-2. J Immunother. 2005;28:120–8.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    von Herrath MG, Harrison LC. Antigen-induced regulatory T cells in autoimmunity. Nat Rev Immunol. 2003;3:223–32.CrossRefGoogle Scholar
  22. 22.
    Bluestone JA, Abbas AK. Natural versus adaptive regulatory T cells. Nat Rev Immunol. 2003;3:253–7.CrossRefPubMedGoogle Scholar
  23. 23.
    Nizar S, Meyer B, Galustian C, Kumar D, Dalgleish A. T regulatory cells, the evolution of targeted immunotherapy. Biochim Biophys Acta. 2010;1806:7–17.PubMedGoogle Scholar
  24. 24.
    Ahmadzadeh M, Rosenberg SA. IL-2 administration increases CD4+ CD25(hi) Foxp3+ regulatory T cells in cancer patients. Blood. 2006;107:2409–14.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Cesana GC, DeRaffele G, Cohen S, Moroziewicz D, Mitcham J, et al. Characterization of CD4+CD25+ regulatory T cells in patients treated with high-dose interleukin-2 for metastatic melanoma or renal cell carcinoma. J Clin Oncol Off J Am Soc Clin Oncol. 2006;24:1169–77.CrossRefGoogle Scholar
  26. 26.
    Jandus C, Bioley G, Speiser DE, Romero P. Selective accumulation of differentiated FOXP3(+) CD4 (+) T cells in metastatic tumor lesions from melanoma patients compared to peripheral blood. Cancer Immunol Immunother CII. 2008;57:1795–805.CrossRefPubMedGoogle Scholar
  27. 27.
    Mougiakakos D, Johansson CC, Trocme E, All-Ericsson C, Economou MA, et al. Intratumoral forkhead box P3-positive regulatory T cells predict poor survival in cyclooxygenase-2-positive uveal melanoma. Cancer. 2010;116:2224–33.PubMedGoogle Scholar
  28. 28.
    Ladanyi A, Mohos A, Somlai B, Liszkay G, Gilde K, et al. FOXP3+ cell density in primary tumor has no prognostic impact in patients with cutaneous malignant melanoma. Pathol Oncol Res POR. 2010;16:303–9.CrossRefPubMedGoogle Scholar
  29. 29.
    Mourmouras V, Fimiani M, Rubegni P, Epistolato MC, Malagnino V, et al. Evaluation of tumour-infiltrating CD4+CD25+FOXP3+ regulatory T cells in human cutaneous benign and atypical naevi, melanomas and melanoma metastases. Br J Dermatol. 2007;157:531–9.CrossRefPubMedGoogle Scholar
  30. 30.
    Vence L, Palucka AK, Fay JW, Ito T, Liu YJ, et al. Circulating tumor antigen-specific regulatory T cells in patients with metastatic melanoma. Proc Natl Acad Sci U S A. 2007;104:20884–9.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Baumgartner JM, Gonzalez R, Lewis KD, Robinson WA, Richter DA, et al. Increased survival from stage IV melanoma associated with fewer regulatory T Cells. J Surg Res. 2009;154:13–20.CrossRefPubMedGoogle Scholar
  32. 32.
    Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med. 2004;10:942–9.CrossRefPubMedGoogle Scholar
  33. 33.
    Knol AC, Nguyen JM, Quereux G, Brocard A, Khammari A, et al. Prognostic value of tumor-infiltrating Foxp3+ T-cell subpopulations in metastatic melanoma. Exp Dermatol. 2011;20:430–4.CrossRefPubMedGoogle Scholar
  34. 34.
    Jiang H, Gebhardt C, Umansky L, Beckhove P, Schulze TJ, et al. Elevated chronic inflammatory factors and myeloid-derived suppressor cells indicate poor prognosis in advanced melanoma patients. Int J Cancer J Int Cancer. 2015;136:2352–60.CrossRefGoogle Scholar
  35. 35.
    Gerber AL, Munst A, Schlapbach C, Shafighi M, Kiermeir D, et al. High expression of FOXP3 in primary melanoma is associated with tumour progression. Br J Dermatol. 2014;170:103–9.CrossRefPubMedGoogle Scholar
  36. 36.
    Mohos A, Sebestyen T, Liszkay G, Plotar V, Horvath S, et al. Immune cell profile of sentinel lymph nodes in patients with malignant melanoma—FOXP3+ cell density in cases with positive sentinel node status is associated with unfavorable clinical outcome. J Transl Med. 2013;11:43.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Wei S, Kryczek I, Zou W. Regulatory T-cell compartmentalization and trafficking. Blood. 2006;108:426–31.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Kimpfler S, Sevko A, Ring S, Falk C, Osen W, et al. Skin melanoma development in ret transgenic mice despite the depletion of CD25+Foxp3+ regulatory T cells in lymphoid organs. J Immunol (Baltimore, Md: 1950). 2009;183:6330–7.CrossRefGoogle Scholar
  39. 39.
    Munn DH, Mellor AL. Indoleamine 2,3-dioxygenase and tumor-induced tolerance. J Clin Invest. 2007;117:1147–54.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Alexandrescu DT, Ichim TE, Riordan NH, Marincola FM, Di Nardo A, et al. Immunotherapy for melanoma: current status and perspectives. J Immunother (Hagerstown, Md: 1997). 2010;33:570–90.CrossRefGoogle Scholar
  41. 41.
    Baumgartner J, Wilson C, Palmer B, Richter D, Banerjee A, et al. Melanoma induces immunosuppression by up-regulating FOXP3(+) regulatory T cells. J Surg Res. 2007;141:72–7.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Rosenberg SA, Yang JC, Schwartzentruber DJ, Hwu P, Marincola FM, et al. Prospective randomized trial of the treatment of patients with metastatic melanoma using chemotherapy with cisplatin, dacarbazine, and tamoxifen alone or in combination with interleukin-2 and interferon alfa-2b. J Clin Oncol Off J Am Soc Clin Oncol. 1999;17:968–75.CrossRefGoogle Scholar
  43. 43.
    Eigentler TK, Weide B, de Braud F, Spitaleri G, Romanini A, et al. A dose-escalation and signal-generating study of the immunocytokine L19-IL2 in combination with dacarbazine for the therapy of patients with metastatic melanoma. Clin Cancer Res Off J Am Assoc Cancer Res. 2011;17:7732–42.CrossRefGoogle Scholar
  44. 44.
    Ridolfi R, Chiarion-Sileni V, Guida M, Romanini A, Labianca R, et al. Cisplatin, dacarbazine with or without subcutaneous interleukin-2, and interferon alpha-2b in advanced melanoma outpatients: results from an Italian multicenter phase III randomized clinical trial. J Clin Oncol Off J Am Soc Clin Oncol. 2002;20:1600–7.CrossRefGoogle Scholar
  45. 45.
    Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363:711–23.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Selby MJ, Engelhardt JJ, Quigley M, Henning KA, Chen T, et al. Anti-CTLA-4 antibodies of IgG2a isotype enhance antitumor activity through reduction of intratumoral regulatory T cells. Cancer Immunol Res. 2013;1:32–42.CrossRefPubMedGoogle Scholar
  47. 47.
    Ramirez-Montagut T, Chow A, Hirschhorn-Cymerman D, Terwey TH, Kochman AA, et al. Glucocorticoid-induced TNF receptor family related gene activation overcomes tolerance/ignorance to melanoma differentiation antigens and enhances antitumor immunity. J immunol (Baltimore, Md: 1950). 2006;176:6434–42.CrossRefGoogle Scholar
  48. 48.
    Brahmer JR, Drake CG, Wollner I, Powderly JD, Picus J, et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol Off J Am Soc Clin Oncol. 2010;28:3167–75.CrossRefGoogle Scholar
  49. 49.
    Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366:2455–65.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Robert C, Ribas A, Wolchok JD, Hodi FS, Hamid O, et al. Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: a randomised dose-comparison cohort of a phase 1 trial. Lancet. 2014;384:1109–17.CrossRefPubMedGoogle Scholar
  51. 51.
    Kim-Schulze S, Kim HS, Fan Q, Kim DW, Kaufman HL. Local IL-21 promotes the therapeutic activity of effector T cells by decreasing regulatory T cells within the tumor microenvironment. Mol Ther J Am Soc Gene Ther. 2009;17:380–8.CrossRefGoogle Scholar
  52. 52.
    Kong LY, Wei J, Sharma AK, Barr J, Abou-Ghazal MK, et al. A novel phosphorylated STAT3 inhibitor enhances T cell cytotoxicity against melanoma through inhibition of regulatory T cells. Cancer Immunol Immunother CII. 2009;58:1023–32.CrossRefPubMedGoogle Scholar
  53. 53.
    Carmenate T, Pacios A, Enamorado M, Moreno E, Garcia-Martinez K, et al. Human IL-2 mutein with higher antitumor efficacy than wild type IL-2. J Immunol (Baltimore, Md: 1950). 2013;190:6230–8.CrossRefGoogle Scholar
  54. 54.
    Keilholz U, Conradt C, Legha SS, Khayat D, Scheibenbogen C, et al. Results of interleukin-2-based treatment in advanced melanoma: a case record-based analysis of 631 patients. J Clin Oncol Off J Am Soc Clin Oncol. 1998;16:2921–9.CrossRefGoogle Scholar
  55. 55.
    Tarhini AA, Kirkwood JM, Gooding WE, Moschos S, Agarwala SS. A phase 2 trial of sequential temozolomide chemotherapy followed by high-dose interleukin 2 immunotherapy for metastatic melanoma. Cancer. 2008;113:1632–40.CrossRefPubMedGoogle Scholar
  56. 56.
    Mougiakakos D, Choudhury A, Lladser A, Kiessling R, Johansson CC. Regulatory T cells in cancer. Adv Cancer Res. 2010;107:57–117.CrossRefPubMedGoogle Scholar
  57. 57.
    Powell Jr DJ, Attia P, Ghetie V, Schindler J, Vitetta ES, et al. Partial reduction of human FOXP3+ CD4 T cells in vivo after CD25-directed recombinant immunotoxin administration. J Immunother (Hagerstown, Md: 1997). 2008;31:189–98.CrossRefGoogle Scholar
  58. 58.
    Matsushita N, Pilon-Thomas SA, Martin LM, Riker AI. Comparative methodologies of regulatory T cell depletion in a murine melanoma model. J Immunol Methods. 2008;333:167–79.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Sutmuller RP, van Duivenvoorde LM, van Elsas A, Schumacher TN, Wildenberg ME, et al. Synergism of cytotoxic T lymphocyte-associated antigen 4 blockade and depletion of CD25(+) regulatory T cells in antitumor therapy reveals alternative pathways for suppression of autoreactive cytotoxic T lymphocyte responses. J Exp Med. 2001;194:823–32.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Berd D, Maguire Jr HC, Mastrangelo MJ. Induction of cell-mediated immunity to autologous melanoma cells and regression of metastases after treatment with a melanoma cell vaccine preceded by cyclophosphamide. Cancer Res. 1986;46:2572–7.PubMedGoogle Scholar
  61. 61.
    Ghiringhelli F, Menard C, Puig PE, Ladoire S, Roux S, et al. Metronomic cyclophosphamide regimen selectively depletes CD4+CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunol Immunother CII. 2007;56:641–8.CrossRefPubMedGoogle Scholar
  62. 62.
    Turk MJ, Guevara-Patino JA, Rizzuto GA, Engelhorn ME, Sakaguchi S, et al. Concomitant tumor immunity to a poorly immunogenic melanoma is prevented by regulatory T cells. J Exp Med. 2004;200:771–82.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Dudley ME, Yang JC, Sherry R, Hughes MS, Royal R, et al. Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens. J Clin Oncol Off J Am Soc Clin Oncol. 2008;26:5233–9.CrossRefGoogle Scholar
  64. 64.
    Klein O, Davis ID, McArthur GA, Chen L, Haydon A, et al. Low-dose cyclophosphamide enhances antigen-specific CD4(+) T cell responses to NY-ESO-1/ISCOMATRIX vaccine in patients with advanced melanoma. Cancer Immunol Immunother CII. 2015;64:507–18.CrossRefPubMedGoogle Scholar
  65. 65.
    Atkins MB, Lotze MT, Dutcher JP, Fisher RI, Weiss G, et al. High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J Clin Oncol Off J Am Soc Clin Oncol. 1999;17:2105–16.CrossRefGoogle Scholar
  66. 66.
    Thornton AM, Donovan EE, Piccirillo CA, Shevach EM. Cutting edge: IL-2 is critically required for the in vitro activation of CD4+CD25+ T cell suppressor function. J Immunol (Baltimore, Md: 1950). 2004;172:6519–23.CrossRefGoogle Scholar
  67. 67.
    Foureau DM, Amin A, White RL, Anderson W, Jones CP, et al. Sequential immune monitoring in patients with melanoma and renal cell carcinoma treated with high-dose interleukin-2: immune patterns and correlation with outcome. Cancer Immunol Immunother CII. 2014;63:1329–40.CrossRefPubMedGoogle Scholar
  68. 68.
    Kwong B, Gai SA, Elkhader J, Wittrup KD, Irvine DJ. Localized immunotherapy via liposome-anchored anti-CD137 + IL-2 prevents lethal toxicity and elicits local and systemic antitumor immunity. Cancer Res. 2013;73:1547–58.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Keilholz U, Punt CJ, Gore M, Kruit W, Patel P, et al. Dacarbazine, cisplatin, and interferon-alfa-2b with or without interleukin-2 in metastatic melanoma: a randomized phase III trial (18951) of the European Organisation for Research and Treatment of Cancer Melanoma Group. J Clin Oncol Off J Am Soc Clin Oncol. 2005;23:6747–55.CrossRefGoogle Scholar
  70. 70.
    Jacobs JF, Punt CJ, Lesterhuis WJ, Sutmuller RP, Brouwer HM, et al. Dendritic cell vaccination in combination with anti-CD25 monoclonal antibody treatment: a phase I/II study in metastatic melanoma patients. Clin Cancer Res Off J Am Assoc Cancer Res. 2010;16:5067–78.CrossRefGoogle Scholar
  71. 71.
    Attia P, Maker AV, Haworth LR, Rogers-Freezer L, Rosenberg SA. Inability of a fusion protein of IL-2 and diphtheria toxin (Denileukin Diftitox, DAB389IL-2, ONTAK) to eliminate regulatory T lymphocytes in patients with melanoma. J Immunother (Hagerstown, Md: 1997). 2005;28:582–92.CrossRefGoogle Scholar
  72. 72.
    Tan C, Reddy V, Dannull J, Ding E, Nair SK, et al. Impact of anti-CD25 monoclonal antibody on dendritic cell-tumor fusion vaccine efficacy in a murine melanoma model. J Transl Med. 2013;11:148.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Steitz J, Bruck J, Lenz J, Knop J, Tuting T. Depletion of CD25(+) CD4(+) T cells and treatment with tyrosinase-related protein 2-transduced dendritic cells enhance the interferon alpha-induced, CD8(+) T-cell-dependent immune defense of B16 melanoma. Cancer Res. 2001;61:8643–6.PubMedGoogle Scholar
  74. 74.
    Quezada SA, Peggs KS, Curran MA, Allison JP. CTLA4 blockade and GM-CSF combination immunotherapy alters the intratumor balance of effector and regulatory T cells. J Clin Invest. 2006;116:1935–45.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Eggermont AM, Robert C. Melanoma in 2011: a new paradigm tumor for drug development. Nat Rev Clin Oncol. 2012;9:74–6.CrossRefPubMedGoogle Scholar
  76. 76.
    Schadendorf D, Hodi FS, Robert C, Weber JS, Margolin K, et al. Pooled analysis of long-term survival data from phase II and phase III trials of ipilimumab in unresectable or metastatic melanoma. J Clin Oncol Off J Am Soc Clin Oncol. 2015;33:1889–94.CrossRefGoogle Scholar
  77. 77.
    Romano E, Kusio-Kobialka M, Foukas PG, Baumgaertner P, Meyer C, et al. Ipilimumab-dependent cell-mediated cytotoxicity of regulatory T cells ex vivo by nonclassical monocytes in melanoma patients. Proc Natl Acad Sci U S A. 2015;112:6140–5.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Simeone E, Gentilcore G, Giannarelli D, Grimaldi AM, Caraco C, et al. Immunological and biological changes during ipilimumab treatment and their potential correlation with clinical response and survival in patients with advanced melanoma. Cancer Immunol Immunother CII. 2014;63:675–83.CrossRefPubMedGoogle Scholar
  79. 79.
    Menard C, Ghiringhelli F, Roux S, Chaput N, Mateus C, et al. Ctla-4 blockade confers lymphocyte resistance to regulatory T-cells in advanced melanoma: surrogate marker of efficacy of tremelimumab? Clin Cancer Res Off J Am Assoc Cancer Res. 2008;14:5242–9.CrossRefGoogle Scholar
  80. 80.
    Ribas A, Tumeh PC. The future of cancer therapy: selecting patients likely to respond to PD1/L1 blockade. Clin Cancer Res Off J Am Assoc Cancer Res. 2014;20:4982–4.CrossRefGoogle Scholar
  81. 81.
    Ji HB, Liao G, Faubion WA, Abadia-Molina AC, Cozzo C, et al. Cutting edge: the natural ligand for glucocorticoid-induced TNF receptor-related protein abrogates regulatory T cell suppression. J Immunol (Baltimore, Md: 1950). 2004;172:5823–7.CrossRefGoogle Scholar
  82. 82.
    Banerjee S, Halder K, Ghosh S, Bose A, Majumdar S. The combination of a novel immunomodulator with a regulatory T cell suppressing antibody (DTA-1) regress advanced stage B16F10 solid tumor by repolarizing tumor associated macrophages. Oncoimmunology. 2015;4:e995559.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Robert C, Long GV, Brady B, Dutriaux C, Maio M, et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2015;372:320–30.CrossRefPubMedGoogle Scholar
  84. 84.
    Curti BD, Urba WJ. Clinical deployment of antibodies for treatment of melanoma. Mol Immunol. 2015;67:18–27.CrossRefPubMedGoogle Scholar
  85. 85.
    Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011;364:2507–16.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Wilmott JS, Long GV, Howle JR, Haydu LE, Sharma RN, et al. Selective BRAF inhibitors induce marked T-cell infiltration into human metastatic melanoma. Clin Cancer Res Off J Am Assoc Cancer Res. 2012;18:1386–94.CrossRefGoogle Scholar
  87. 87.
    Ho PC, Meeth KM, Tsui YC, Srivastava B, Bosenberg MW, et al. Immune-based antitumor effects of BRAF inhibitors rely on signaling by CD40L and IFNgamma. Cancer Res. 2014;74:3205–17.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Steinberg SM, Zhang P, Malik BT, Boni A, Shabaneh TB, et al. BRAF inhibition alleviates immune suppression in murine autochthonous melanoma. Cancer Immunol Res. 2014;2:1044–50.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Jayaraman P, Alfarano MG, Svider PF, Parikh F, Lu G, et al. iNOS expression in CD4+ T cells limits Treg induction by repressing TGFbeta1: combined iNOS inhibition and Treg depletion unmask endogenous antitumor immunity. Clin Cancer Res Off J Am Assoc Cancer Res. 2014;20:6439–51.CrossRefGoogle Scholar
  90. 90.
    Forde PF, Sadadcharam M, Hall LJ, Donovan TRO, de Kruijf M, et al. Enhancement of electroporation facilitated immunogene therapy via T-reg depletion. Cancer Gene Ther. 2014;21:349–54.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Goding SR, Wilson KA, Xie Y, Harris KM, Baxi A, et al. Restoring immune function of tumor-specific CD4+ T cells during recurrence of melanoma. J immunol (Baltimore, Md: 1950). 2013;190:4899–909.CrossRefGoogle Scholar
  92. 92.
    Mattarollo SR, Steegh K, Li M, Duret H, Foong Ngiow S, et al. Transient Foxp3(+) regulatory T-cell depletion enhances therapeutic anticancer vaccination targeting the immune-stimulatory properties of NKT cells. Immunol Cell Biol. 2013;91:105–14.CrossRefPubMedGoogle Scholar
  93. 93.
    Liang SC, Moskalenko M, Van Roey M, Jooss K. Depletion of regulatory T cells by targeting folate receptor 4 enhances the potency of a GM-CSF-secreting tumor cell immunotherapy. Clin immunol. 2013;148:287–98.CrossRefPubMedGoogle Scholar
  94. 94.
    Sugiyama D, Nishikawa H, Maeda Y, Nishioka M, Tanemura A, et al. Anti-CCR4 mAb selectively depletes effector-type FoxP3+CD4+ regulatory T cells, evoking antitumor immune responses in humans. Proc Natl Acad Sci U S A. 2013;110:17945–50.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Zhengxiao Ouyang
    • 1
  • Hongwei Wu
    • 1
  • Linqin Li
    • 1
  • Yi Luo
    • 1
  • Xianan Li
    • 1
  • Gang Huang
    • 1
  1. 1.Department of Orthopaedics, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaPeople’s Republic of China

Personalised recommendations