Tumor Biology

, Volume 37, Issue 4, pp 4727–4734 | Cite as

KRAS polymorphisms are associated with survival of CRC in Chinese population

  • Qiong Dai
  • Hui Lian Wei
  • Juan Huang
  • Tie Jun Zhou
  • Li Chai
  • Zhi-Hui Yang
Original Article


rs12245, rs12587, rs9266, rs1137282, rs61764370, and rs712 of KRAS oncogene are characterized in the 3′UTR. The study highlights the important role of these polymorphisms playing in the susceptibility, oxaliplatin-based chemotherapy sensitivity, progression, and prognosis of CRC. Improved multiplex ligation detection reaction (iMLDR) technique is used for genotyping. An unconditional logistic regression model was used to estimate the association of certain polymorphism and CRC risk. The Kaplan–Meier method, log-rank test, and Cox regression model were used to evaluate the effects of polymorphisms on survival analysis. Results demonstrated that TT genotype and T allele of rs712 were associated with the increased risk of CRC; the patients with GG genotype and G allele of rs61764370 had a shorter survival and a higher risk of relapse or metastasis of CRC. Our studies supported the conclusions that rs61764370 and rs712 polymorphisms of the KRAS are functional and it may play an important role in the development of CRC and oxaliplatin-based chemotherapy efficiency and prognosis of CRC.


KRAS Polymorphisms Survival Colorectal cancer 



These work successfully completed were supported by Genesky Biotechnologies, Inc. (Shanghai, China) and all the volunteer participants.

Compliance with ethical standards


This work was financially supported by the State Natural Sciences Foundation Projects of China (No. 81101679), the Joint Project of Department of Technology of Luzhou, Sichuan and Luzhou Medical College (No. 2013LZLY-J44, No. 14JC0091), Fund Project of Department of Education of Sichuan Province (No. 13ZB0272), and Project of Department of Health of Sichuan Province (No. 120376).


  1. 1.
    Theodoratou E, Montazeri Z, Hawken S, Allum GC, Gong J, et al. Systematic meta-analyses and field synopsis of genetic association studies in colorectal cancer. J Natl Cancer Inst. 2012;104:1433–57.CrossRefPubMedGoogle Scholar
  2. 2.
    Ambros V. MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing. Cell. 2003;113:673–6.CrossRefPubMedGoogle Scholar
  3. 3.
    Croce CM, Calin GA. miRNAs, cancer, and stem cell division. Cell. 2005;122:6–7.CrossRefPubMedGoogle Scholar
  4. 4.
    Esquela-Kerscher A, Slack FJ. Oncomirs-microRNAs with a role in cancer. Nat Rev Cancer. 2006;6:259–69.CrossRefPubMedGoogle Scholar
  5. 5.
    Zhang B, Pan X, Cobb GP, Anderson TA. microRNAs as oncogenes and tumor suppressors. Dev Biol. 2007;302:1–12.CrossRefPubMedGoogle Scholar
  6. 6.
    Bonfrate L, Altomare DF, Di Lena M, Travaglio E, Rotelli MT, et al. MicroRNA in colorectal cancer: new perspectives for diagnosis, prognosis and treatment. J Gastrointestin Liver Dis. 2013;22:311–20.PubMedGoogle Scholar
  7. 7.
    Altomare DF, Di Lena M, Giuratrabocchetta S. MicroRNA: future perspectives in colorectal cancer. Color Dis. 2012;14:133–4.CrossRefGoogle Scholar
  8. 8.
    Akao Y, Nakagawa Y, Naoe T. let-7 microRNA functions as a potential growth suppressor in human colon cancer cells. Biol Pharm Bull. 2006;29:903–6.CrossRefPubMedGoogle Scholar
  9. 9.
    Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, et al. RAS is regulated by the let-7 microRNA family. Cell. 2005;120:635–47.CrossRefPubMedGoogle Scholar
  10. 10.
    Chin LJ, Ratner E, Leng S, Zhai R, Nallur S, et al. A SNP in a let-7 microRNA complementary site in the KRAS 3′UTR increases non-small cell cancer risk. Cancer Res. 2008;68:8535–40.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Paranjape T, Heneghan H, Lindner R, Keane FK, Hoffman A, et al. A 3′-untranslated region KRAS variant and triple-negative breast cancer: a case–control and genetic analysis. Lancet Oncol. 2011;12:377–86.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res. 2004;64:3753–6.CrossRefPubMedGoogle Scholar
  13. 13.
    Christensen BC, Moyer BJ, Avissar M, Ouellet LG, Plaza SL, et al. A let-7 microRNA-binding site polymorphism in the KRAS 3′UTR is associated with reduced survival in oral cancers. Carcinogenesis. 2009;30:1003–7.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Ratner E, Lu L, Boeke M, Barnett R, Nallur S, et al. A KRAS-variant in ovarian cancer acts as a genetic marker of cancer risk. Cancer Res. 2010;70:6509–15.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Pan XM, Sun RF, Li ZH, Guo XM, Zhang Z, et al. A let-7 KRAS rs712 polymorphism increases colorectal cancer risk. Tumour Biol. 2014;35:831–5.CrossRefPubMedGoogle Scholar
  16. 16.
    Ratner ES, Keane FK, Lindner R, Tassi RA, Paranjape T, et al. A KRAS variant is a biomarker of poor outcome, platinum chemotherapy resistance and a potential target for therapy in ovarian cancer. Oncogene. 2012;31:4559–66.CrossRefPubMedGoogle Scholar
  17. 17.
    Graziano F, Canestrari E, Loupakis F, Ruzzo A, Galluccio N, et al. Genetic modulation of the Let-7 microRNA binding to KRAS 3′-untranslated region and survival of metastatic colorectal cancer patients treated with salvage cetuximab-irinotecan. Pharmacogenomics J. 2010;10:458–64.CrossRefPubMedGoogle Scholar
  18. 18.
    Smits KM, Paranjape T, Nallur S, Wouters KA, Weijenberg MP, et al. A let-7 microRNA SNP in the KRAS 3′UTR is prognostic in earlystage colorectal cancer. Clin Cancer Res. 2011;17:7723–31.CrossRefPubMedGoogle Scholar
  19. 19.
    Ryan BM, Robles AI, Harris CC. KRAS-LCS6 genotype as a prognostic marker in early-stage CRC–letter. Clin Cancer Res. 2012;18:3487–8.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kjersem JB, Ikdahl T, Guren T, Skovlund E, Sorbye H, et al. Let-7 miRNA-binding site polymorphism in the KRAS 3′UTR; colorectal cancer screening population prevalence and influence on clinical outcome in patients with metastatic colorectal cancer treated with 5-fluorouracil and oxaliplatin +/- cetuximab. BMC Cancer. 2012;12:534.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Wang WY, Chien YC, Wong YK, Lin YL, Lin JC. Effects of KRAS mutation and polymorphism on the risk and prognosis of oral squamous cell carcinoma. Head Neck. 2012;34:663–6.CrossRefPubMedGoogle Scholar
  22. 22.
    Li ZH, Pan XM, Han BW, Guo XM, Zhang Z, et al. A let-7 binding site polymorphism rs712 in the KRAS 3′UTR is associated with an increased risk of gastric cancer. Tumour Biol. 2013;34:3159–63.CrossRefPubMedGoogle Scholar
  23. 23.
    Dai Q, Luo H, Li XP, Huang J, Zhou TJ, Yang ZH. XRCC1 and ERCC1 polymorphisms are related to susceptibility and survival of colorectal cancer in the Chinese population. Mutagenesis. 2015;30:441–9.CrossRefPubMedGoogle Scholar
  24. 24.
    Bos JL, Fearon ER, Hamilton SR, Verlaan-deVries M, van Boom JH, et al. Prevalence of ras gene mutations in human colorectal cancers. Nature. 1987;327:293–7.CrossRefPubMedGoogle Scholar
  25. 25.
    Boughdady IS, Kinsella AR, Haboubi NY, Schofield PF. K-ras gene mutations in adenomas and carcinomas of the colon. Surg Oncol. 1992;1:275–82.CrossRefPubMedGoogle Scholar
  26. 26.
    Hollestelle A, Pelletier C, Hooning M, Crepin E, Schutte M, et al. Prevalence of the variant allele rs61764370 T > G in the 3′UTR of KRAS among Dutch BRCA1, BRCA2 and non-BRCA1/BRCA2 breast cancer families. Breast Cancer Res Treat. 2011;128:79–84.CrossRefPubMedGoogle Scholar
  27. 27.
    Pharoah PD, Palmieri RT, Ramus SJ, Gayther SA, Andrulis IL, et al. The role of KRAS rs61764370 in invasive epithelial ovarian cancer: implications for clinical testing. Clin Cancer Res. 2011;17:3742–50.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Zhang W, Winder T, Ning Y, Pohl A, Yang D, et al. A let-7 microRNA-binding site polymorphism in 3′-untranslated region of KRAS gene predicts response in wild-type KRAS patients with metastatic colorectal cancer treated with cetuximab monotherapy. Ann Oncol. 2011;22:104–9.CrossRefPubMedGoogle Scholar
  29. 29.
    Youn CK, Kim MH, Cho HJ, Kim HB, Chang IY, et al. Oncogenic H-Ras up-regulates expression of ERCC1 to protect cells from platinum-based anticancer agents. Cancer Res. 2011;64:4849–57.CrossRefGoogle Scholar
  30. 30.
    Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70.CrossRefPubMedGoogle Scholar
  31. 31.
    Sherr CJ. Principles of tumor suppression. Cell. 2004;116:235–46.CrossRefPubMedGoogle Scholar
  32. 32.
    Mishra PJ, Banerjee D, Bertino JR. MiRSNPs or MiR-polymorphisms, new players in microRNA mediated regulation of the cell: introducing microRNA pharmacogenomics. Cell Cycle. 2008;7:853–8.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Qiong Dai
    • 1
  • Hui Lian Wei
    • 2
  • Juan Huang
    • 2
  • Tie Jun Zhou
    • 2
  • Li Chai
    • 2
  • Zhi-Hui Yang
    • 2
  1. 1.Department of Human AnatomyLuzhou Medical CollegeLuzhouChina
  2. 2.Department of PathologyThe First Affiliated Hospital of Luzhou Medical CollegeLuzhouChina

Personalised recommendations