Tumor Biology

, Volume 37, Issue 4, pp 5455–5466 | Cite as

Differential expression of ligands for NKG2D and DNAM-1 receptors by epithelial ovarian cancer-derived exosomes and its influence on NK cell cytotoxicity

  • Alireza Labani-Motlagh
  • Pernilla Israelsson
  • Ulrika Ottander
  • Eva Lundin
  • Ivan Nagaev
  • Olga Nagaeva
  • Eva Dehlin
  • Vladimir Baranov
  • Lucia Mincheva-Nilsson
Original Article


Cancers constitutively produce and secrete into the blood and other biofluids 30–150 nm-sized endosomal vehicles called exosomes. Cancer-derived exosomes exhibit powerful influence on a variety of biological mechanisms to the benefit of the tumors that produce them. We studied the immunosuppressive ability of epithelial ovarian cancer (EOC) exosomes on two cytotoxic pathways of importance for anticancer immunity—the NKG2D receptor-ligand pathway and the DNAM-1-PVR/nectin-2 pathway. Using exosomes, isolated from EOC tumor explant and EOC cell-line culture supernatants, and ascitic fluid from EOC patients, we studied the expression of NKG2D and DNAM-1 ligands on EOC exosomes and their ability to downregulate the cognate receptors. Our results show that EOC exosomes differentially and constitutively express NKG2D ligands from both MICA/B and ULBP families on their surface, while DNAM-1 ligands are more seldom expressed and not associated with the exosomal membrane surface. Consequently, the NKG2D ligand-bearing EOC exosomes significantly downregulated the NKG2D receptor expression on peripheral blood mononuclear cells (PBMC) while the DNAM-1 receptor was unaffected. The downregulation of NKG2D receptor expression was coupled to inhibition of NKG2D receptor-ligand-mediated degranulation and cytotoxicity measured in vitro with OVCAR-3 and K562 cells as targets. The EOC exosomes acted as a decoy impairing the NKG2D mediated cytotoxicity while the DNAM-1 receptor-ligand system remained unchanged. Taken together, our results support and explain the mechanism behind the recently reported finding that in EOC, NK-cell recognition and killing of tumor cells was mainly dependent on DNAM-1 signaling while the contribution of the NKG2D receptor-ligand pathway was complementary and uncertain.


Epithelial ovarian cancer/EOC Tumor Exosomes NKG2D DNAM-1/CD266 Cytotoxicity MICA/B ULBP PVR Nectin-2 



Patients and colleagues from the Dept. of Obstetrics and Gynecology at Norrland’s University Hospital are gratefully acknowledged. This work was supported by Swedish National Cancer Research Foundation (Cancerfonden, 2013/439), Swedish National Research Foundation (Vetenskapsrådet, K2013-54X-22341-01-05), Central ALF fund VLL, and Insamlingsstiftelsen, Umeå University.

Compliance with ethical standards

Conflicts of interest



  1. 1.
    Campbell KS, Hasegawa J. Natural killer cell biology: an update and future direction. J Allergy Clin Immunol. 2013;132:536–44.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Lanier LL. NK cell recognition. Annu Rev Immunol. 2005;23:225–74.CrossRefPubMedGoogle Scholar
  3. 3.
    Smyth MJ, Swann J, Cretney E, Zerafa N, Yokoyama WM, Hayakawa Y. NKG2D function protects the host from tumor initiation. J Exp Med. 2005;202:583–8.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Guerra N, Tan YX, Jincker NT, Choy A, Gallardo F, Xiong N, et al. NKG2D-deficient mice are defective in tumor surveillance in models of spontaneous malignancy. Immunity. 2008;28:571–80.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    El-Sherbiny YM, Meade JL, Holmes TD, McConagle D, Mackie SL, Morgan AW, et al. The requirement for DNAM-1, NKG2D and NKp46 in the natural killer cell-mediated killing of myeloma cells. Cancer Res. 2007;67:8444–9.CrossRefPubMedGoogle Scholar
  6. 6.
    Raulet DH. Roles of the NKG2D immunoreceptor and its ligands. Nat Rev Immunol. 2003;3:781–90.CrossRefPubMedGoogle Scholar
  7. 7.
    Hildreth JE, Gotch FM, Hildreth PD, McMichael AJ. A human lymphocyte associated antigen involved in cell-mediated lympholysis. Eur J Immunol. 1983;13:202–8.CrossRefPubMedGoogle Scholar
  8. 8.
    Gahmberg CG. Leukocyte adhesion: CD11/CD18 integrins and intercellular adhesion molecules. Curr Opin Cell Biol. 1997;9:643–50.CrossRefPubMedGoogle Scholar
  9. 9.
    Fuchs A, Colonna M. The role of NK cell recognition of nectin and nectin-like proteins in tumor surveillance. Semin Cancer Biol. 2006;16:359–66.CrossRefPubMedGoogle Scholar
  10. 10.
    Carlsten M, Björkström N, Norell H, Bryceson Y, van Hall T, Baumann B, et al. DNAX accessory molecule-1 mediated recognition of freshly isolated ovarian carcinoma by resting natural killer cells. Cancer Res. 2007;67:1317–25.CrossRefPubMedGoogle Scholar
  11. 11.
    Gubbels JA, Claussen N, Kapur AK, Connor JP, Patankar MS. The detection, treatment, and biology of epithelial ovarian cancer. J Ovarian Res. 2010;3:8.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Yigit R, Massuger LF, Figdor CG, Torensma R. Ovarian cancer creates a suppressive microenvironment to escape immune elimination. Gynecol Oncol. 2010;117:366–72.CrossRefPubMedGoogle Scholar
  13. 13.
    Holschneider CH, Berek JS. Ovarian cancer: epidemiology, biology, and prognostic factors. Semin Surg Oncol. 2000;19(1):3–10.CrossRefPubMedGoogle Scholar
  14. 14.
    Mincheva-Nilsson L, Baranov V. Cancer exosomes and NKG2D receptor-ligand interactions: impairing NKG2D-mediated cytotoxicity and anti-tumor immune surveillance. Semin Cancer Biol. 2014;28:24–30.CrossRefPubMedGoogle Scholar
  15. 15.
    Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55:611–22.CrossRefPubMedGoogle Scholar
  16. 16.
    Stenqvist AC, Nagaeva O, Baranov V, Mincheva-Nilsson L. Exosomes secreted by human placenta carry functional Fas ligand and TRAIL molecules and convey apoptosis in activated immune cells, suggesting exosome-mediated immune privilege of the fetus. J Immunol. 2013;191:5515–23.CrossRefPubMedGoogle Scholar
  17. 17.
    Mincheva-Nilsson L, Nagaeva O, Chen T, Stendahl U, Antsiferova J, Mogren I, et al. Placenta-derived soluble MHC class I chain-related molecules down-regulate NKG2D receptor on peripheral blood mononuclear cells during human pregnancy: a possible novel immune escape mechanism for fetal survival. J Immunol. 2006;176:3585–92.CrossRefPubMedGoogle Scholar
  18. 18.
    Hedlund M, Stenqvist AC, Nagaeva O, Kjellberg L, Wulff M, Baranov V, et al. Human placenta expresses and secretes NKG2D ligands via exosomes that down-modulate the cognate receptor expression: evidence for immunosuppressive function. J Immunol. 2009;183:340–51.CrossRefPubMedGoogle Scholar
  19. 19.
    Greening DW, Xu R, Ji H, Tauro BJ, Simpson RJ. A protocol for exosome isolation and characterization: evaluation of ultracentrifugation, density-gradient separation and immunoaffinity capture methods. In Proteomic profiling: Methods and Protocols. Anton Posh (ed). Methods in molecular Biology, vol. 1295, DOI  10.1007/978-1-4939-2550-6_15, 2015.
  20. 20.
    Kiessling R, Klein E, Wigzell H. Natural killer cells in the mouse.I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur J Immunol. 1975;5:112–7.CrossRefPubMedGoogle Scholar
  21. 21.
    Costello RT, Fauriat C, Sivori S, Marcenaro E, Olive D. NK cells: innate immunity against hematological malignancies. Trends Immunol. 2004;25:328–33.CrossRefPubMedGoogle Scholar
  22. 22.
    Lanier LL. A renaissance for the tumor immunosurveillance hypothesis. Nat Med. 2001;7:1178–80.CrossRefPubMedGoogle Scholar
  23. 23.
    Kaplan-Lefko PJ, Chen TM, Ittmann MM, Barrios RJ, Ayala GE, Huss WJ, et al. Pathobiology of autochthonous prostate cancer in a pre-clinical transgenic mouse model. Prostate. 2003;55:219–37.CrossRefPubMedGoogle Scholar
  24. 24.
    Groh V, Reinhard R, Secrist H, Grabstein KH, Spies T. Broad tumor-associated expression and recognition by tumor-derived gamma-delta T cells of MICA and MICB. Proc Natl Acad Sci U S A. 1999;96:6879–84.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Clayton A, Mitchell JP, Court J, Linnane S, Mason MD, Tabi Z. Human tumor-derived exosomes downmodulate NKG2D expression. J Immunol. 2008;180:7249–58.CrossRefPubMedGoogle Scholar
  26. 26.
    Lundholm L, Schroder M, Nagaeva O, Baranov V, Widmark A, Mincheva-Nilsson L, et al. Prostate tumor-derived exosomes down-regulate NKG2D expression on natural killer cells and CD8+ T cells: mechanism of immune evasion. PLoS ONE. 2014;9:e108925.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Clayton A, Mason MD. Exosomes in tumor immunity. Curr Oncol. 2009;16:46–9.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Hedlund M, Nagaeva O, Kargl D, Baranov V, Mincheva-Nilsson L. Thermal- and oxidative stress causes enhanced release of NKG2D ligand-bearing immunosuppressive exosomes in leukemia/lymphoma T and B cells. PLoS One. 2011;6:e16899.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Mizuki N, Ota M, Kimura M, Ohno S, Ando H, Katsuyama Y, et al. Triplet repeat polymorphism in the transmembrane region of MICA gene: a strong association of six CGT repetitions with Becet disease. Proc Natl Acad Sci U S A. 1997;94:1298–303.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Ashiru O, Boutet P, Fernandez-Messina L, Agüera-González S, Skepper J, Valés-Gómez M, et al. Natural killer cell cytotoxicity is suppressed by exposure to the human NKG2D ligand MICA*0008 that is shed by tumor cells in exosomes. Cancer Res. 2010;70:481–9.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Ghaderi M, Hjelmstrom, Hallmans G, Wiklund F, Lenner P, Dillner J, et al. MICA gene polymorphism and the risk to develop cervical epithelial neoplasia. Hum Immunol. 1999;60:970–3.CrossRefPubMedGoogle Scholar
  32. 32.
    Filipazzi P, Bürdek M, Villa A, Rivoltini L, Huber V. Recent advances on the role of tumor exosomes in immunosuppression and disease progression. Semin Cancer Biol. 2012;22:342–9.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Alireza Labani-Motlagh
    • 1
  • Pernilla Israelsson
    • 1
    • 2
  • Ulrika Ottander
    • 2
  • Eva Lundin
    • 3
  • Ivan Nagaev
    • 1
  • Olga Nagaeva
    • 1
  • Eva Dehlin
    • 1
  • Vladimir Baranov
    • 1
  • Lucia Mincheva-Nilsson
    • 1
  1. 1.Department of Clinical Microbiology/Clinical ImmunologyUmeå UniversityUmeåSweden
  2. 2.Department of Clinical Sciences/Obstetrics and GynaecologyUmeå UniversityUmeåSweden
  3. 3.Department of Biomedical Sciences/PathologyUmeå UniversityUmeåSweden

Personalised recommendations