Skip to main content
Log in

Differential expression of ligands for NKG2D and DNAM-1 receptors by epithelial ovarian cancer-derived exosomes and its influence on NK cell cytotoxicity

  • Original Article
  • Published:
Tumor Biology

Abstract

Cancers constitutively produce and secrete into the blood and other biofluids 30–150 nm-sized endosomal vehicles called exosomes. Cancer-derived exosomes exhibit powerful influence on a variety of biological mechanisms to the benefit of the tumors that produce them. We studied the immunosuppressive ability of epithelial ovarian cancer (EOC) exosomes on two cytotoxic pathways of importance for anticancer immunity—the NKG2D receptor-ligand pathway and the DNAM-1-PVR/nectin-2 pathway. Using exosomes, isolated from EOC tumor explant and EOC cell-line culture supernatants, and ascitic fluid from EOC patients, we studied the expression of NKG2D and DNAM-1 ligands on EOC exosomes and their ability to downregulate the cognate receptors. Our results show that EOC exosomes differentially and constitutively express NKG2D ligands from both MICA/B and ULBP families on their surface, while DNAM-1 ligands are more seldom expressed and not associated with the exosomal membrane surface. Consequently, the NKG2D ligand-bearing EOC exosomes significantly downregulated the NKG2D receptor expression on peripheral blood mononuclear cells (PBMC) while the DNAM-1 receptor was unaffected. The downregulation of NKG2D receptor expression was coupled to inhibition of NKG2D receptor-ligand-mediated degranulation and cytotoxicity measured in vitro with OVCAR-3 and K562 cells as targets. The EOC exosomes acted as a decoy impairing the NKG2D mediated cytotoxicity while the DNAM-1 receptor-ligand system remained unchanged. Taken together, our results support and explain the mechanism behind the recently reported finding that in EOC, NK-cell recognition and killing of tumor cells was mainly dependent on DNAM-1 signaling while the contribution of the NKG2D receptor-ligand pathway was complementary and uncertain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Campbell KS, Hasegawa J. Natural killer cell biology: an update and future direction. J Allergy Clin Immunol. 2013;132:536–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lanier LL. NK cell recognition. Annu Rev Immunol. 2005;23:225–74.

    Article  CAS  PubMed  Google Scholar 

  3. Smyth MJ, Swann J, Cretney E, Zerafa N, Yokoyama WM, Hayakawa Y. NKG2D function protects the host from tumor initiation. J Exp Med. 2005;202:583–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Guerra N, Tan YX, Jincker NT, Choy A, Gallardo F, Xiong N, et al. NKG2D-deficient mice are defective in tumor surveillance in models of spontaneous malignancy. Immunity. 2008;28:571–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. El-Sherbiny YM, Meade JL, Holmes TD, McConagle D, Mackie SL, Morgan AW, et al. The requirement for DNAM-1, NKG2D and NKp46 in the natural killer cell-mediated killing of myeloma cells. Cancer Res. 2007;67:8444–9.

    Article  CAS  PubMed  Google Scholar 

  6. Raulet DH. Roles of the NKG2D immunoreceptor and its ligands. Nat Rev Immunol. 2003;3:781–90.

    Article  CAS  PubMed  Google Scholar 

  7. Hildreth JE, Gotch FM, Hildreth PD, McMichael AJ. A human lymphocyte associated antigen involved in cell-mediated lympholysis. Eur J Immunol. 1983;13:202–8.

    Article  CAS  PubMed  Google Scholar 

  8. Gahmberg CG. Leukocyte adhesion: CD11/CD18 integrins and intercellular adhesion molecules. Curr Opin Cell Biol. 1997;9:643–50.

    Article  CAS  PubMed  Google Scholar 

  9. Fuchs A, Colonna M. The role of NK cell recognition of nectin and nectin-like proteins in tumor surveillance. Semin Cancer Biol. 2006;16:359–66.

    Article  CAS  PubMed  Google Scholar 

  10. Carlsten M, Björkström N, Norell H, Bryceson Y, van Hall T, Baumann B, et al. DNAX accessory molecule-1 mediated recognition of freshly isolated ovarian carcinoma by resting natural killer cells. Cancer Res. 2007;67:1317–25.

    Article  CAS  PubMed  Google Scholar 

  11. Gubbels JA, Claussen N, Kapur AK, Connor JP, Patankar MS. The detection, treatment, and biology of epithelial ovarian cancer. J Ovarian Res. 2010;3:8.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Yigit R, Massuger LF, Figdor CG, Torensma R. Ovarian cancer creates a suppressive microenvironment to escape immune elimination. Gynecol Oncol. 2010;117:366–72.

    Article  CAS  PubMed  Google Scholar 

  13. Holschneider CH, Berek JS. Ovarian cancer: epidemiology, biology, and prognostic factors. Semin Surg Oncol. 2000;19(1):3–10.

    Article  CAS  PubMed  Google Scholar 

  14. Mincheva-Nilsson L, Baranov V. Cancer exosomes and NKG2D receptor-ligand interactions: impairing NKG2D-mediated cytotoxicity and anti-tumor immune surveillance. Semin Cancer Biol. 2014;28:24–30.

    Article  CAS  PubMed  Google Scholar 

  15. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55:611–22.

    Article  CAS  PubMed  Google Scholar 

  16. Stenqvist AC, Nagaeva O, Baranov V, Mincheva-Nilsson L. Exosomes secreted by human placenta carry functional Fas ligand and TRAIL molecules and convey apoptosis in activated immune cells, suggesting exosome-mediated immune privilege of the fetus. J Immunol. 2013;191:5515–23.

    Article  CAS  PubMed  Google Scholar 

  17. Mincheva-Nilsson L, Nagaeva O, Chen T, Stendahl U, Antsiferova J, Mogren I, et al. Placenta-derived soluble MHC class I chain-related molecules down-regulate NKG2D receptor on peripheral blood mononuclear cells during human pregnancy: a possible novel immune escape mechanism for fetal survival. J Immunol. 2006;176:3585–92.

    Article  CAS  PubMed  Google Scholar 

  18. Hedlund M, Stenqvist AC, Nagaeva O, Kjellberg L, Wulff M, Baranov V, et al. Human placenta expresses and secretes NKG2D ligands via exosomes that down-modulate the cognate receptor expression: evidence for immunosuppressive function. J Immunol. 2009;183:340–51.

    Article  CAS  PubMed  Google Scholar 

  19. Greening DW, Xu R, Ji H, Tauro BJ, Simpson RJ. A protocol for exosome isolation and characterization: evaluation of ultracentrifugation, density-gradient separation and immunoaffinity capture methods. In Proteomic profiling: Methods and Protocols. Anton Posh (ed). Methods in molecular Biology, vol. 1295, DOI 10.1007/978-1-4939-2550-6_15, 2015.

  20. Kiessling R, Klein E, Wigzell H. Natural killer cells in the mouse.I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur J Immunol. 1975;5:112–7.

    Article  CAS  PubMed  Google Scholar 

  21. Costello RT, Fauriat C, Sivori S, Marcenaro E, Olive D. NK cells: innate immunity against hematological malignancies. Trends Immunol. 2004;25:328–33.

    Article  CAS  PubMed  Google Scholar 

  22. Lanier LL. A renaissance for the tumor immunosurveillance hypothesis. Nat Med. 2001;7:1178–80.

    Article  CAS  PubMed  Google Scholar 

  23. Kaplan-Lefko PJ, Chen TM, Ittmann MM, Barrios RJ, Ayala GE, Huss WJ, et al. Pathobiology of autochthonous prostate cancer in a pre-clinical transgenic mouse model. Prostate. 2003;55:219–37.

    Article  PubMed  Google Scholar 

  24. Groh V, Reinhard R, Secrist H, Grabstein KH, Spies T. Broad tumor-associated expression and recognition by tumor-derived gamma-delta T cells of MICA and MICB. Proc Natl Acad Sci U S A. 1999;96:6879–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Clayton A, Mitchell JP, Court J, Linnane S, Mason MD, Tabi Z. Human tumor-derived exosomes downmodulate NKG2D expression. J Immunol. 2008;180:7249–58.

    Article  CAS  PubMed  Google Scholar 

  26. Lundholm L, Schroder M, Nagaeva O, Baranov V, Widmark A, Mincheva-Nilsson L, et al. Prostate tumor-derived exosomes down-regulate NKG2D expression on natural killer cells and CD8+ T cells: mechanism of immune evasion. PLoS ONE. 2014;9:e108925.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Clayton A, Mason MD. Exosomes in tumor immunity. Curr Oncol. 2009;16:46–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hedlund M, Nagaeva O, Kargl D, Baranov V, Mincheva-Nilsson L. Thermal- and oxidative stress causes enhanced release of NKG2D ligand-bearing immunosuppressive exosomes in leukemia/lymphoma T and B cells. PLoS One. 2011;6:e16899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mizuki N, Ota M, Kimura M, Ohno S, Ando H, Katsuyama Y, et al. Triplet repeat polymorphism in the transmembrane region of MICA gene: a strong association of six CGT repetitions with Becet disease. Proc Natl Acad Sci U S A. 1997;94:1298–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ashiru O, Boutet P, Fernandez-Messina L, Agüera-González S, Skepper J, Valés-Gómez M, et al. Natural killer cell cytotoxicity is suppressed by exposure to the human NKG2D ligand MICA*0008 that is shed by tumor cells in exosomes. Cancer Res. 2010;70:481–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ghaderi M, Hjelmstrom, Hallmans G, Wiklund F, Lenner P, Dillner J, et al. MICA gene polymorphism and the risk to develop cervical epithelial neoplasia. Hum Immunol. 1999;60:970–3.

    Article  CAS  PubMed  Google Scholar 

  32. Filipazzi P, Bürdek M, Villa A, Rivoltini L, Huber V. Recent advances on the role of tumor exosomes in immunosuppression and disease progression. Semin Cancer Biol. 2012;22:342–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Patients and colleagues from the Dept. of Obstetrics and Gynecology at Norrland’s University Hospital are gratefully acknowledged. This work was supported by Swedish National Cancer Research Foundation (Cancerfonden, 2013/439), Swedish National Research Foundation (Vetenskapsrådet, K2013-54X-22341-01-05), Central ALF fund VLL, and Insamlingsstiftelsen, Umeå University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucia Mincheva-Nilsson.

Ethics declarations

Conflicts of interest

None

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Labani-Motlagh, A., Israelsson, P., Ottander, U. et al. Differential expression of ligands for NKG2D and DNAM-1 receptors by epithelial ovarian cancer-derived exosomes and its influence on NK cell cytotoxicity. Tumor Biol. 37, 5455–5466 (2016). https://doi.org/10.1007/s13277-015-4313-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-4313-2

Keywords

Navigation