Tumor Biology

, Volume 37, Issue 12, pp 15615–15625 | Cite as

miR-122 inhibits cancer cell malignancy by targeting PKM2 in gallbladder carcinoma

  • Wei Lu
  • Yijian Zhang
  • Linzhu Zhou
  • Xuan Wang
  • Jiasheng Mu
  • Lin Jiang
  • Yunping Hu
  • Ping Dong
  • Yingbin Liu
Original Article


Gallbladder cancer (GBC) is one of the lethal diseases of digestive system. Increasing evidence prompt that microRNAs (miRs) might provide a novel therapeutical target for malignant disease. The antitumor effect of miR-122 to GBC is worth to be investigated. miR-122 expression level in GBC tissue sample and cell lines were assayed by qRT-PCR. miR-122 mimics were transfected for upregulation of miR-122 expression. Cell function was assayed by CCK8, flow cytometry, wound healing assay, migration assay, and invasion assay. The target genes of miR-122 were predicated by TargetScan online program and verified by western blot and luciferase report gene assay. miR-122 was decreased in GBC tissue and cell lines. The exogenous introduction of miR-122 exhibits multiple antitumor effect in GBC cell proliferation, invasion, and metastasis. Further studies revealed that the PKM2 was a regulative target of miR-122 in GBC cell. miR-122 also inhibits TGF-β-induced epithelium mesenchymal transformation of GBC cell by downregulating PKM2 expression. These findings suggest that miR-122 plays an important role in tumorigenesis of GBC through interfering PKM2, highlighting its usefulness as a potential therapeutic agent in GBC.


miR-122 Gallbladder carcinoma Malignant PKM2 


Authors’ contributions

Wei Lu and Yingbin Liu contributed to the funding/financial support and the conception and design of the study. Wei Lu, Yijian Zhang, and Linzhu Zhou completed the data analysis and interpretation. Wei Lu and Yijian Zhang did the major manuscript writing. All authors are responsible for the provision of study materials or patients, collection and assembly of data, and final approval of the manuscript.

Compliance with ethical standards


This study was supported by the China National High Technology Research and Development Program (863 Program) (No. 2012AA022606), National Natural Science Foundation of China (No. 91440203, 81172026, 81272402, 81301816, and 81172029), China Postdoctoral Science Foundation (No. 2014M561487), and Interdisciplinary Program of Shanghai JiaoTong University (No. 14JCRY05).

Conflicts of interest



  1. 1.
    Hundal R, Shaffer EA. Gallbladder cancer: epidemiology and outcome. Clin Epidemiol. 2014;6:99–109.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Rakic M, Patrlj L, Kopljar M, Klicek R, Kolovrat M, Loncar B, et al. Gallbladder cancer. Hepatobiliary Surg Nutr. 2014;3:221–6.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Wang J, Zhang KY, Liu SM, Sen S. Tumor-associated circulating microRNAs as biomarkers of cancer. Molecules. 2014;19:1912–38.CrossRefPubMedGoogle Scholar
  4. 4.
    Yi B, Piazza GA, Su X, Xi Y. MicroRNA and cancer chemoprevention. Cancer Prev Res. 2013;6:401–9.CrossRefGoogle Scholar
  5. 5.
    Fang YX, Gao WQ. Roles of microRNAs during prostatic tumorigenesis and tumor progression. Oncogene. 2014;33:135–47.CrossRefPubMedGoogle Scholar
  6. 6.
    Li L, Xiao B, Tong H, Xie F, Zhang Z, Xiao GG. Regulation of breast cancer tumorigenesis and metastasis by miRNAs. Expert Rev Proteome. 2012;9:615–25.CrossRefGoogle Scholar
  7. 7.
    Mannoor K, Liao J, Jiang F. Small nucleolar RNAs in cancer. Biochim Biophys Acta. 1826;2012:121–8.Google Scholar
  8. 8.
    Cherni I, Weiss GJ. MiRNAs in lung cancer: large roles for small players. Future Oncol. 2011;7:1045–55.CrossRefPubMedGoogle Scholar
  9. 9.
    Liu C, Tang DG. MicroRNA regulation of cancer stem cells. Cancer Res. 2011;71:5950–4.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Nakao K, Miyaaki H, Ichikawa T. Antitumor function of microRNA-122 against hepatocellular carcinoma. J Gastroenterol. 2014;49:589–93.CrossRefPubMedGoogle Scholar
  11. 11.
    Li Y, Masaki T, Lemon SM. Mir-122 and the hepatitis C RNA genome: more than just stability. RNA Biol. 2013;10:919–23.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Chang J, Nicolas E, Marks D, Sander C, Lerro A, Buendia MA, et al. Mir-122, a mammalian liver-specific microRNA, is processed from HCR MRNA and may downregulate the high affinity cationic amino acid transporter cat-1. RNA Biol. 2004;1:106–13.CrossRefPubMedGoogle Scholar
  13. 13.
    Chen CL, Wu JC, Chen GY, Yuan PH, Tseng YW, Li KC, et al. Baculovirus-mediated miRNA regulation to suppress hepatocellular carcinoma tumorigenicity and metastasis. Mol Ther: J Am Soc Gene Ther. 2015;23:79–88.CrossRefGoogle Scholar
  14. 14.
    Gramantieri L, Ferracin M, Fornari F, Veronese A, Sabbioni S, Liu CG, et al. Cyclin g1 is a target of mir-122a, a microRNA frequently down-regulated in human hepatocellular carcinoma. Cancer Res. 2007;67:6092–9.CrossRefPubMedGoogle Scholar
  15. 15.
    Wang B, Wang H, Yang Z. Mir-122 inhibits cell proliferation and tumorigenesis of breast cancer by targeting IGF1R. PLoS ONE. 2012;7, e47053.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Wang G, Zhao Y, Zheng Y. Mir-122/wnt/beta-catenin regulatory circuitry sustains glioma progression. Tumour Biol: J Int Soc Oncodevelopmental Biol Med. 2014;35:8565–72.CrossRefGoogle Scholar
  17. 17.
    Chen YJ, Chang LS. Hydroquinone-induced mir-122 down-regulation elicits adam17 up-regulation, leading to increased soluble TNF-alpha production in human leukemia cells with expressed bcr/abl. Biochem Pharmacol. 2013;86:620–31.CrossRefPubMedGoogle Scholar
  18. 18.
    Hsu SH, Wang B, Kota J, Yu J, Costinean S, Kutay H, et al. Essential metabolic, anti-inflammatory, and anti-tumorigenic functions of mir-122 in liver. J Clin Invest. 2012;122:2871–83.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kitamura T, Connolly K, Ruffino L, Ajiki T, Lueckgen A, DiGiovanni J, et al. The therapeutic effect of histone deacetylase inhibitor pci-24781 on gallbladder carcinoma in bk5.Erbb2 mice. J Hepatol. 2012;57:84–91.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Wong N, De Melo J, Tang D. PKM2, a central point of regulation in cancer metabolism. Int J Cell Biol. 2013;2013:242513.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Yang W, Lu Z. Nuclear PKM2 regulates the Warburg effect. Cell Cycle. 2013;12:3154–8.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Kwon OH, Kang TW, Kim JH, Kim M, Noh SM, Song KS, et al. Pyruvate kinase m2 promotes the growth of gastric cancer cells via regulation of bcl-xl expression at transcriptional level. Biochem Biophys Res Commun. 2012;423:38–44.CrossRefPubMedGoogle Scholar
  23. 23.
    Li W, Xu Z, Hong J, Xu Y. Expression patterns of three regulation enzymes in glycolysis in esophageal squamous cell carcinoma: association with survival. Med Oncol. 2014;31:118.CrossRefPubMedGoogle Scholar
  24. 24.
    Nemazanyy I, Espeillac C, Pende M, Panasyuk G. Role of PI3K, mTOR and Akt2 signalling in hepatic tumorigenesis via the control of PKM2 expression. Biochem Soc Trans. 2013;41:917–22.CrossRefPubMedGoogle Scholar
  25. 25.
    Kaboli PJ, Rahmat A, Ismail P, Ling KH. MicroRNA-based therapy and breast cancer: a comprehensive review of novel therapeutic strategies from diagnosis to treatment. Pharmacol Res: Off J Ital Pharmacol Soc. 2015;97:104–21.CrossRefGoogle Scholar
  26. 26.
    Zhou JJ, Zheng S, Sun LF, Zheng L. MicroRNA regulation network in colorectal cancer metastasis. World J Biol Chem. 2014;5:301–7.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Rothschild SI. MicroRNA therapies in cancer. Mol Cell Ther. 2014;2:7.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Hao J, Zhang Y, Deng M, Ye R, Zhao S, Wang Y, et al. MicroRNA control of epithelial-mesenchymal transition in cancer stem cells. Int J Cancer J Int cancer. 2014;135:1019–27.CrossRefGoogle Scholar
  29. 29.
    Dong Y, Yu J, Ng SS. MicroRNA dysregulation as a prognostic biomarker in colorectal cancer. Cancer Manag Res. 2014;6:405–22.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Banno K, Iida M, Yanokura M, Kisu I, Iwata T, Tominaga E, et al. MicroRNA in cervical cancer: oncomirs and tumor suppressor miRs in diagnosis and treatment. TheScientificWorldJOURNAL. 2014;2014:178075.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Liu AM, Xu Z, Shek FH, Wong KF, Lee NP, Poon RT, et al. Mir-122 targets pyruvate kinase M2 and affects metabolism of hepatocellular carcinoma. PLoS ONE. 2014;9, e86872.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Jung CJ, Iyengar S, Blahnik KR, Ajuha TP, Jiang JX, Farnham PJ, et al. Epigenetic modulation of mir-122 facilitates human embryonic stem cell self-renewal and hepatocellular carcinoma proliferation. PLoS ONE. 2011;6, e27740.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Wei Lu
    • 1
    • 2
  • Yijian Zhang
    • 1
    • 3
  • Linzhu Zhou
    • 4
  • Xuan Wang
    • 3
  • Jiasheng Mu
    • 1
  • Lin Jiang
    • 1
    • 3
  • Yunping Hu
    • 1
    • 3
  • Ping Dong
    • 1
  • Yingbin Liu
    • 1
    • 3
  1. 1.Department of General Surgery, Xinhua HospitalAffiliated to Shanghai Jiao Tong University, School of MedicineShanghaiChina
  2. 2.Institute of Social Cognitive and Behavioral SciencesShanghai Jiao Tong UniversityShanghaiChina
  3. 3.Institute of Biliary Tract Diseases ResearchShanghai Jiao Tong University School of MedicineShanghaiChina
  4. 4.School of Chemistry and Chemical EngineeringShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations